已知函數(shù)f(x)=aln(x+1)+(x+1)2在x=1處有極值.
(1)求實數(shù)a值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)令g(x)=f′(x),若曲線g(x)在(1,g(1))處的切線與兩坐標軸分別交于A,B兩點(O為坐標原點),求△AOB的面積.

解:(Ⅰ)因為f(x)=aln(x+1)+(x+1)2,
所以
由f′(1)=0,可得,a=-8.
經(jīng)檢驗a=-8時,函數(shù)f(x)在x=1處取得極值,
所以a=-8.
(Ⅱ)f(x)=-8ln(x+1)+(x+1)2,=
而函數(shù)f(x)的定義域為(-1,+∞),
當x變化時,f′(x),f(x)的變化情況如下表:

由表可知,f(x)的單調(diào)減區(qū)間為(-1,1),f(x)的單調(diào)增區(qū)間為(1,+∞).(10分)
(Ⅲ)由于
所以,當x=1時,g′(1)=4,g(1)=0.
所以切線斜率為4,切點為(1,0),
所以切線方程為y=4(x-1),即4x-y-4=0.
令x=0,得y=-4,令y=0,得x=1.
所以△AOB的面積
分析:(1)先對f(x)求導,由題意可得,f′(1)=0,代入求a
(2)求函數(shù)f(x)的定義域,令f′(x)>0,f′(x)<0分別解出函數(shù)的單調(diào)增區(qū)間、減區(qū)間
(3)求g(1)=f′(1)及g′(x),然后求切線的斜率k=g′(1),寫出切線方程,求出A,B,進一步求結果.
點評:本題考查了導數(shù)的應用:極值在x0存在的性質,f(x0)=0;求函數(shù)的單調(diào)區(qū)間:即解f′(x)>0,f′(x)<0;導數(shù)的幾何意義:函數(shù)在x0處的導數(shù)f(x0)為該點的切線斜率.屬于基礎知識的綜合運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案