已知函數(shù)f(x)=sin(2x+φ),其中φ∈(0,2π),若f(x)≤|f(
π
6
)|對x∈R恒成立,且f(
π
2
)<f(π),則f(x)的單調(diào)遞增區(qū)間是(  )
A、[kπ+
π
6
,kπ+
3
](k∈Z)
B、[kπ-
π
3
,kπ+
π
6
](k∈Z)
C、[kπ,kπ+
π
2
](k∈Z)
D、[kπ-
π
2
,kπ](k∈Z)
考點:正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:由f(x)≤|f(
π
6
)|⇒sin(φ+
π
3
)=±1,又由f(
π
2
)<f(π)⇒2sinφ>0,從而可解得φ=
π
6
,由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
可解得f(x)的單調(diào)遞增區(qū)間.
解答: 解:由f(x)≤|f(
π
6
)|⇒f(
π
6
)=±1⇒sin(φ+
π
3
)=±1,…①
又由f(
π
2
)<f(π)⇒sin(π+φ)<sin(2π+φ)⇒2sinφ>0,…②
∵φ∈(0,2π),由①②可得φ=
π
6
,
∴f(x)=sin(2x+
π
6
),
∴由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
可解得:x[kπ-
π
3
,kπ+
π
6
](k∈Z)
故選:B.
點評:本題主要考察了正弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在正項等比數(shù)列{an}中,log2a3+log2a6+log2a9=3,則a1•a11的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C,D為四個不同點,且
AB
+
BC
+
CD
+
DA
=
0
,則( 。
A、A,B,C,D四點必共面
B、A,B,C,D四點構(gòu)成一個空間四邊形
C、A,B,C,D四點必共線
D、A,B,C,D四點的位置無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=
3
x與雙曲線C:
x2
a2
+
y2
b2
=1(a>0,b>0)左右兩支分別交于M、N兩點,F(xiàn)為雙曲線C的右焦點,O是坐標原點,若|FO|=|MO|,則雙曲線的離心率等于( 。
A、
3
+
2
B、
3
+1
C、
2
+1
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一塊直角邊為
3
2
2
m的等腰直角三角形木板,現(xiàn)要鋸出一個矩形做辦公桌面,設(shè)矩形的一邊長為xm,如圖所示:
(1)求矩形面積y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x為多少時,矩形面積取得最大值?矩形的最大面積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人從4門課程中各選修2門,則甲、乙兩人所選的課程中有一門相同的選法有(  )
A、6種B、12種
C、16種D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績是否與性別有關(guān),先統(tǒng)計本校高三年級每個學(xué)生一學(xué)期數(shù)學(xué)成績平均分(采用百分制),剔除平均分在30分以下的學(xué)生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績分為6組,得到如下所示頻數(shù)分布表.
分數(shù)段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
39181565
64910132
(1)估計男、女生各自的成績平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結(jié)果看,判斷數(shù)學(xué)成績與性別是否有關(guān);
優(yōu)分非優(yōu)分合計
男生
女生
合計100
(2)規(guī)定80分以上為優(yōu)分(含80分),請你根據(jù)已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認為“數(shù)學(xué)成績與性別有關(guān)”.
附表及公式
P(k2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a<-b<0,則|a+b|-|a-b|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=4sin(x+
π
2
)cos(x+
π
2
)是( 。
A、周期為2π的偶函數(shù)
B、周期為2π的奇函數(shù)
C、周期為π的偶函數(shù)
D、周期為π的奇函數(shù)

查看答案和解析>>

同步練習(xí)冊答案