【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程和的直角坐標(biāo)方程;

2)設(shè)是曲線上一點(diǎn),此時(shí)參數(shù),將射線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)交曲線于點(diǎn),記曲線的上頂點(diǎn)為點(diǎn),求的面積.

【答案】(1) ,.(2)

【解析】

1)根據(jù)參數(shù)方程與直角坐標(biāo)方程的轉(zhuǎn)化,先將的參數(shù)方程轉(zhuǎn)化為直角坐標(biāo)方程.根據(jù)極坐標(biāo)與直角坐標(biāo)方程的轉(zhuǎn)化,再將直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程.根據(jù)極坐標(biāo)與直角坐標(biāo)方程的轉(zhuǎn)化,的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程.

2)根據(jù)參數(shù)求得的極坐標(biāo).根據(jù)變換過程可得點(diǎn)的極坐標(biāo),根據(jù)三角形面積為即可求得的面積.

1)由已知可得

則極坐標(biāo)方程為

.

2)設(shè)點(diǎn)的橫坐標(biāo)為,則由已知可得

且直角坐標(biāo),極坐標(biāo),其中,

極坐標(biāo),則有

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的最大值為,最小值為,則( )

A.存在實(shí)數(shù),使

B.存在實(shí)數(shù),使

C.對(duì)任意實(shí)數(shù),有

D.對(duì)任意實(shí)數(shù),有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,經(jīng)過軸正半軸上點(diǎn)的直線于不同的兩點(diǎn).

1)若,求點(diǎn)的坐標(biāo);

2)若,求證:原點(diǎn)總在以線段為直徑的圓的內(nèi)部;

3)若,且直線有且只有一個(gè)公共點(diǎn),問:△的面積是否存在最小值?若存在,求出最小值,并求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省普通高中學(xué)業(yè)水平考試成績按人數(shù)所占比例依次由高到低分為,,,五個(gè)等級(jí),等級(jí),等級(jí),等級(jí),等級(jí)共.其中等級(jí)為不合格,原則上比例不超過.該省某校高二年級(jí)學(xué)生都參加學(xué)業(yè)水平考試,先從中隨機(jī)抽取了部分學(xué)生的考試成績進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如圖所示.若該校高二年級(jí)共有1000名學(xué)生,則估計(jì)該年級(jí)拿到級(jí)及以上級(jí)別的學(xué)生人數(shù)有(

A.45B.660C.880D.900

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的三個(gè)內(nèi)角AB,C所對(duì)的邊分別是ab,c,向量(cos B,cos C),(2acb),且

(1)求角B的大;

(2)b,求ac的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)求的最小正周期;

2)若將函數(shù)圖像向左平移個(gè)單位后得到函數(shù)的圖像,求函數(shù)在區(qū)間上的值域;

3)銳角三角形中,若,,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國的第一艘航空母艦遼寧艦在某次艦載機(jī)起降飛行訓(xùn)練中,有5-15”艦載機(jī)準(zhǔn)備著艦,已知乙機(jī)不能最先著艦,丙機(jī)必須在甲機(jī)之前著艦(不一定相鄰),那么不同的著艦方法種數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)求曲線處的切線的方程;

(2)若對(duì)于任意實(shí)數(shù)恒成立,試確定的取值范圍;

(3)當(dāng)時(shí),函數(shù)上是否存在極值?若存在,請(qǐng)求出極值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案