8.已知偶函數(shù)f(x)和奇函數(shù)g(x)的定義域都是(-4,4),它們在(-4,0]上的圖象分別是圖①和圖②,則關于x的不等式f(x)•g(x)<0的解集是(-2,0)∪(2,4).

分析 令h(x)=f(x)g(x),根據(jù)h(x)的奇偶性和函數(shù)圖象得出不等式的解.

解答 解:設h(x)=f(x)g(x),則h(-x)=f(-x)g(-x)=-f(x)g(x)=-h(x),
∴h(x)是奇函數(shù),
由圖象可知:當-4<x<-2時,f(x)<0,g(x)<0,即h(x)>0,
當-2<x<0時,f(x)>0,g(x)<0,即h(x)<0,
∴h(x)<0的解為(-2,0)∪(2,4).
故答案為(-2,0)∪(2,4).

點評 本題考查了函數(shù)奇偶性的性質(zhì),函數(shù)圖象的意義,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知點的極坐標是$(3,\frac{π}{4})$,則它的直角坐標是$(\frac{{3\sqrt{2}}}{2},\frac{{3\sqrt{2}}}{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.點P(4,m)在以點F為焦點的拋物線$\left\{{\begin{array}{l}{x=4{t^2}}\\{y=4t}\end{array}}\right.$(t為參數(shù))上,則|PF|等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若角α是第四象限角,則sinα$\sqrt{1-co{s}^{2}α}$-cosα$\sqrt{1-si{n}^{2}α}$=(  )
A.1B.-1C.±1D.以上均不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知二次函數(shù)f(x)滿足f(x+2)=f(2-x),且f(x)=0的兩根平方和為10,圖象過點(0,3).
(1)求f(5)的值;
(2)若函數(shù)f(x)在定義域[a,+∞)上f(x)≥8恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知正四面體的棱長為a,求它外接球的體積及內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設函數(shù)f(x)=log3(9x)•log3(3x),$\frac{1}{9}$≤x≤9,則f(x)的最小值為-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知拋物線C:y2=4x上一點A到焦點F的距離與其到對稱軸的距離之比為5:4,且|AF|>2,則A點到原點的距離為( 。
A.3B.$4\sqrt{2}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下面幾何體的截面一定是圓面的是( 。
A.圓臺B.C.圓柱D.棱柱

查看答案和解析>>

同步練習冊答案