若|
a
|=1,|
b
|=6,
a
?(
b
-
a
)=2,則
a
b
的夾角為(  )
A、
π
6
B、
π
3
C、
π
4
D、
π
2
分析:展開平面向量的單項(xiàng)式乘多項(xiàng)式運(yùn)算,代入向量的模求解
a
b
的夾角.
解答:解:設(shè)
a
b
的夾角為θ (0≤θ≤π),
由|
a
|=1,|
b
|=6,
a
•(
b
-
a
)=2,得
a
b
-|
a
|2=2
,
|
a
||
b
|cosθ-12=2
,1×6cosθ=3,
∴cosθ=
1
2

∵0≤θ≤π,
θ=
π
3

故選:B.
點(diǎn)評(píng):本題考查了數(shù)量積表示兩個(gè)向量的夾角,考查了平面向量的數(shù)量積公式,訓(xùn)練了平面向量夾角的求法,是中低檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

|
a
|=1,|
b
|=2,
c
=
a
+
b
,且
c
a
,則向量
a
b
的夾角為
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3-ax2+b2x+1(a、b∈R).
(1)若a=1,b=1,求f(x)的極值和單調(diào)區(qū)間;
(2)已知x1,x2為f(x)的極值點(diǎn),且|f(x1)-f(x2)|=
29
|x1-x2|,若當(dāng)x∈[-1,1]時(shí),函數(shù)y=f(x)的圖象上任意一點(diǎn)的切線斜率恒小于m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+b
(1)若-2≤a≤4,-2≤b≤4(a,b∈Z),求等式f(x)>0的解集為R的概率;
(2)若|a|≤1,|b|≤1,求方程f(x)=0兩根都為負(fù)數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在鈍角△ABC中,若a=1,b=2,則最大邊c的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若a=1,b=
7
,c=
3
,求B.
(2)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,a=1,b=
3
,A=300
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案