已知向量=(,),=(,-),雙曲線=1上一點M到F(7,0)的距離為11,N是MF的中點,O為坐標原點,則|ON|=( )
A.
B.
C.
D.
【答案】分析:根據(jù)題意求出雙曲線的標準方程,F(xiàn)(7,0)恰好是該雙曲線的右焦點,根據(jù)雙曲線的定義,以三角形中位線可求得|ON|的長.
解答:解:雙曲線方程為:,
左支上的點到右焦點F(7,0)的距離的最小值為12,
∴M是雙曲線右支上的點,記左焦點為F/,
則|MF/|-|MF|=2a,即|MF/|=21,
在△MFF/中,ON中位線,∴|ON|=
故選C.
點評:此題是個基礎題,考查向量數(shù)量積的坐標運算和雙曲線的定義,體現(xiàn)了數(shù)學結合的思想方法,注:本題中,若將M到F(7,0)的距離換為13,將有兩種情況(M可能在雙曲線的右支上,也可能在左支上)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
3
2
,-
3
2
),
b
=(
1
2
3
2
),且存在實數(shù)x和y,使向量
m
=
a
+(x2-3)•
b
n
=-y
a
+x
b
,且
m
n

(Ⅰ)求函數(shù)y=f(x)的關系式,并求其單調區(qū)間和極值;
(Ⅱ)是否存在正數(shù)M,使得對任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤M成立?若存在求出M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•惠州一模)已知向量
a
=(-1,1)
,
b
=(3,m)
a
∥(
a
+
b
)
,則m=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量a=(
3
,1),b=(0,1),c=(k,
3
)
,若
a
+2
b
c
垂直,則k=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
=(sinx,2
3
cosx
),
=(2sinx,sinx),設f(x)=
 • 
-1
,
(1)求f(x)的最小正周期及單調遞增區(qū)間;
(2)若x∈[ 0 ,  
π
2
 ]
,求f(x)的值域;
(3)若f(x)的圖象按
=(t,0)作長度最短的平移后,其圖象關于原點對稱,求
的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinβ,1),
b
=(2,-1)且
a
b
,則sinβ等于
1
2
1
2

查看答案和解析>>

同步練習冊答案