A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 因為(2a+b+c)2=4a2+b2+c2+4ab+2bc+4ca,與已知等式比較發(fā)現(xiàn),只要利用均值不等式b2+c2≥2bc即可求出結(jié)果.
解答 解:因為a(a+b+c)+bc=16,
所以16×4=(a2+ab+ac+bc)×4=4a2+4ab+4ac+4bc≤4a2+4ab+b2+c2+4ca+2bc=(2a+b+c)2,
所以2a+b+c≥8,
所以2a+b+c的最小值為8.
故選:D.
點評 本小題主要考查均值不等式的有關(guān)知識及配方法的有關(guān)知識,以及轉(zhuǎn)化與化歸的思想方法.解答的關(guān)鍵是利用平方關(guān)系4a2+4ab+b2+c2+4ca+2bc=(2a+b+c)2建立條件與結(jié)論之間的聯(lián)系.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≠$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z} | B. | {x|x≠kπ+$\frac{3π}{4}$,k∈Z} | C. | {x|x≠$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z} | D. | {x|x≠kπ+$\frac{π}{4}$,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com