已知橢圓的離心率為,并且直線是拋物線的一條切線。

(1)求橢圓的方程

(2)過點(diǎn)的動(dòng)直線交橢圓、兩點(diǎn),試問:在直角坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在求出的坐標(biāo);若不存在,說(shuō)明理由。

 

【答案】

(1)所求橢圓方程為

(2)在直角坐標(biāo)平面上存在一個(gè)定點(diǎn)T(0,1)滿足條件    

【解析】本題考查了橢圓,拋物線與直線的綜合運(yùn)用,另外,還結(jié)合了向量知識(shí),綜合性強(qiáng),須認(rèn)真分析

I)先跟據(jù)直線y=x+b是拋物線C2:y2=4x的一條切線,求出b的值,再由橢圓離心率為 ,求出a的值,則橢圓方程可得.

(Ⅱ)先假設(shè)存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過定點(diǎn),再用垂直時(shí),向量 ,的數(shù)量積為0,得到關(guān)于直線斜率k的方程,求k,若能求出,則存在,若求不出,則不存在.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時(shí)直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開家前能得到報(bào)紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點(diǎn),求e.

查看答案和解析>>

同步練習(xí)冊(cè)答案