【題目】“綠水青山就是金山銀山”,為了響應(yīng)國(guó)家政策,我市環(huán)保部門對(duì)市民進(jìn)行了一次環(huán)境保護(hù)知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參與問(wèn)卷調(diào)查的50人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
組別 | ||||||
男 | 1 | 2 | 2 | 10 | 9 | 6 |
女 | 0 | 5 | 5 | 5 | 3 | 2 |
若規(guī)定問(wèn)卷得分不低于70分的市民稱為“環(huán)境保護(hù)關(guān)注者”,則上圖中表格可得列聯(lián)表如下:
非“環(huán)境保護(hù)關(guān)注者” | 是“環(huán)境保護(hù)關(guān)注者” | 合計(jì) | |
男 | 5 | 25 | 30 |
女 | 10 | 10 | 20 |
合計(jì) | 15 | 35 | 50 |
(1)請(qǐng)完成上述列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“環(huán)境保護(hù)關(guān)注者”與性別有關(guān)?
(2)若問(wèn)卷得分不低于80分的人稱為“環(huán)境保護(hù)達(dá)人”,現(xiàn)在從本次調(diào)查的“環(huán)境保護(hù)達(dá)人”中利用分層抽樣的方法抽取4名市民參與環(huán)保知識(shí)問(wèn)答,再?gòu)倪@4名市民中隨機(jī)抽取2人參與座談會(huì),求抽取的2名市民中,既有男“環(huán)境保護(hù)達(dá)人”又有女“環(huán)境保護(hù)達(dá)人”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】列聯(lián)表見(jiàn)解析,在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“環(huán)境保護(hù)關(guān)注者”與性別有關(guān);
【解析】
根據(jù)表中的數(shù)據(jù)重新整合,完成列聯(lián)表,然后將列聯(lián)表中的數(shù)據(jù)代入的公式計(jì)算求解,結(jié)合臨界值表進(jìn)行判斷即可;
列舉出所有可能的情況和既有男“環(huán)境保護(hù)達(dá)人”又有女“環(huán)境保護(hù)達(dá)人”包含的情況,再利用古典概型的概率計(jì)算公式求解即可.
由表中數(shù)據(jù)可得列聯(lián)表如下,
非“環(huán)境保護(hù)關(guān)注者” | 是“環(huán)境保護(hù)關(guān)注者” | 合計(jì) | |
男 | 5 | 25 | 30 |
女 | 10 | 10 | 20 |
合計(jì) | 15 | 35 | 50 |
將列聯(lián)表中的數(shù)據(jù)代入公式可得,
的觀測(cè)值,
所以在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“環(huán)境保護(hù)關(guān)注者”與性別有關(guān);
由題可知,利用分層抽樣的方法可得,
抽取4名市民中男環(huán)保達(dá)人人,女環(huán)保達(dá)人人,
設(shè)男環(huán)保達(dá)人為,女環(huán)保達(dá)人為,
從中抽取兩人參與座談會(huì)所有的情況為
共種情況,
既有男“環(huán)境保護(hù)達(dá)人”又有女“環(huán)境保護(hù)達(dá)人”包含的情況為
共種情況,
由古典概型的概率計(jì)算公式可得,
所求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時(shí)劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.
(1)求每件產(chǎn)品的平均銷售利潤(rùn);
(2)該企業(yè)主管部門為了解企業(yè)年?duì)I銷費(fèi)用(單位:萬(wàn)元)對(duì)年銷售量(單位:萬(wàn)件)的影響,對(duì)該企業(yè)近年的年?duì)I銷費(fèi)用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.
表中,,,.
根據(jù)散點(diǎn)圖判斷,可以作為年銷售量(萬(wàn)件)關(guān)于年?duì)I銷費(fèi)用(萬(wàn)元)的回歸方程.
①求關(guān)于的回歸方程;
②用所求的回歸方程估計(jì)該企業(yè)每年應(yīng)投入多少營(yíng)銷費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益銷售利潤(rùn)營(yíng)銷費(fèi)用,取)
附:對(duì)于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】去年年底,某商業(yè)集團(tuán)公司根據(jù)相關(guān)評(píng)分細(xì)則,對(duì)其所屬25家商業(yè)連鎖店進(jìn)行了考核評(píng)估.將各連鎖店的評(píng)估分?jǐn)?shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團(tuán)公司依據(jù)評(píng)估得分,將這些連鎖店劃分為A,B,C,D四個(gè)等級(jí),等級(jí)評(píng)定標(biāo)準(zhǔn)如下表所示.
評(píng)估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評(píng)定等級(jí) | D | C | B | A |
(1)估計(jì)該商業(yè)集團(tuán)各連鎖店評(píng)估得分的眾數(shù)和平均數(shù);
(2)從評(píng)估分?jǐn)?shù)不小于80分的連鎖店中任選2家介紹營(yíng)銷經(jīng)驗(yàn),求至少選一家A等級(jí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(I)若,函數(shù)的極大值為,求實(shí)數(shù)的值;
(Ⅱ)若對(duì)任意的 在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底而為菱形,且菱形所在的平面與所在的平面相互垂直,,,,.
(1)求證:平面;
(2)求四棱錐的最長(zhǎng)側(cè)棱的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團(tuán)體決賽中,中國(guó)隊(duì)與韓國(guó)隊(duì)相遇,中國(guó)隊(duì)男子選手A,B,C,D,E依次出場(chǎng)比賽,在以往對(duì)戰(zhàn)韓國(guó)選手的比賽中他們五人獲勝的概率分別是0.8,0.8,0.8,0.75,0.7,并且比賽勝負(fù)相互獨(dú)立.賽會(huì)釆用5局3勝制,先贏3局者獲得勝利.
(1)在決賽中,中國(guó)隊(duì)以3∶1獲勝的概率是多少?
(2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),,其中a,.
Ⅰ求的極大值;
Ⅱ設(shè),,若對(duì)任意的,恒成立,求a的最大值;
Ⅲ設(shè),若對(duì)任意給定的,在區(qū)間上總存在s,,使成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)設(shè)定義在上的函數(shù)的最大值為,最小值為,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年底,北京2022年冬奧組委會(huì)啟動(dòng)志愿者全球招募,僅一個(gè)月內(nèi)報(bào)名人數(shù)便突破60萬(wàn),其中青年學(xué)生約有50萬(wàn)人.現(xiàn)從這50萬(wàn)青年學(xué)生志愿者中,按男女分層抽樣隨機(jī)選取20人進(jìn)行英語(yǔ)水平測(cè)試,所得成績(jī)(單位:分)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下:
(Ⅰ)試估計(jì)在這50萬(wàn)青年學(xué)生志愿者中,英語(yǔ)測(cè)試成績(jī)?cè)?/span>80分以上的女生人數(shù);
(Ⅱ)從選出的8名男生中隨機(jī)抽取2人,記其中測(cè)試成績(jī)?cè)?/span>70分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;
(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機(jī)分成若干組(每組人數(shù)不少于5000),并在每組中隨機(jī)選取個(gè)人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語(yǔ)測(cè)試成績(jī)?cè)?/span>70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com