【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機抽取件產(chǎn)品,統(tǒng)計其質(zhì)量指標值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標值位于該區(qū)間的概率.

1)求每件產(chǎn)品的平均銷售利潤;

2)該企業(yè)主管部門為了解企業(yè)年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對該企業(yè)近年的年營銷費用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點圖(如圖2)及一些統(tǒng)計量的值.

表中,,,

根據(jù)散點圖判斷,可以作為年銷售量(萬件)關于年營銷費用(萬元)的回歸方程.

①求關于的回歸方程;

②用所求的回歸方程估計該企業(yè)每年應投入多少營銷費,才能使得該企業(yè)的年收益的預報值達到最大?(收益銷售利潤營銷費用,取

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為

【答案】1元.(2)①萬元

【解析】

1)每件產(chǎn)品的銷售利潤為,由已知可得的取值,由頻率分布直方圖可得劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率,從而可得的概率分布列,依期望公式計算出期望即為平均銷售利潤;

(2)①對取自然對數(shù),得,

,,,則,這就是線性回歸方程,由所給公式數(shù)據(jù)計算出系數(shù),得線性回歸方程,從而可求得;

②求出收益,可設換元后用導數(shù)求出最大值.

解:(1)設每件產(chǎn)品的銷售利潤為,則的可能取值為,,.由頻率分布直方圖可得產(chǎn)品為劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率分別為、

所以;;.所以的分布列為

所以(元).

即每件產(chǎn)品的平均銷售利潤為元.

2)①由,得

,,則,

由表中數(shù)據(jù)可得

,

所以,即

因為取,所以,故所求的回歸方程為

②設年收益為萬元,則

,則,,當時,,

時,,所以當,即時,有最大值

即該企業(yè)每年應該投入萬元營銷費,能使得該企業(yè)的年收益的預報值達到最大,最大收益為萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線,)的一條漸近線方程為,點在雙曲線上;拋物線)的焦點F與雙曲線的右焦點重合.

1)求雙曲線和拋物線的標準方程;

2)過焦點F作一條直線l交拋物線于A,B兩點,當直線l的斜率為時,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)是常數(shù),且.

1)討論函數(shù)的單調(diào)區(qū)間;

2)當處取得極值時,若關于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;

3)求證:,時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】太極是中國古代的哲學術語,意為派生萬物的本源.太極圖是以黑白兩個魚形紋組成的圓形圖案,俗稱陰陽魚.太極圖形象化地表達了陰陽輪轉(zhuǎn),相反相成是萬物生成變化根源的哲理.太極圖形展現(xiàn)了一種互相轉(zhuǎn)化,相對統(tǒng)一的形式美.按照太極圖的構圖方法,在平面直角坐標系中,圓的圖象分割為兩個對稱的魚形圖案,圖中的兩個一黑一白的小圓通常稱為“魚眼”,已知小圓的半徑均為,現(xiàn)在大圓內(nèi)隨機投放一點,則此點投放到“魚眼”部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高二年級學生某次數(shù)學考試成績的分布情況,從該年級的1120名學生中隨機抽取了100名學生的數(shù)學成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學生的成績按照,,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一塊各面均涂有油漆的正方體被鋸成27個大小相同的小正方體,若將這些小正方體均勻地攪混在一起,從中任意取出一個,則取出的小正方體兩面涂有油漆的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為原點,以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標系,直線的參數(shù)方程為 .

(1)寫出直線的普通方程與曲線的直角坐標方程;

(2)設曲線經(jīng)過伸縮變換得到曲線,曲線上任一點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】綠水青山就是金山銀山,為了響應國家政策,我市環(huán)保部門對市民進行了一次環(huán)境保護知識的網(wǎng)絡問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調(diào)查的50人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:

組別

1

2

2

10

9

6

0

5

5

5

3

2

若規(guī)定問卷得分不低于70分的市民稱為環(huán)境保護關注者,則上圖中表格可得列聯(lián)表如下:

環(huán)境保護關注者

環(huán)境保護關注者

合計

5

25

30

10

10

20

合計

15

35

50

1)請完成上述列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為環(huán)境保護關注者與性別有關?

2)若問卷得分不低于80分的人稱為環(huán)境保護達人,現(xiàn)在從本次調(diào)查的環(huán)境保護達人中利用分層抽樣的方法抽取4名市民參與環(huán)保知識問答,再從這4名市民中隨機抽取2人參與座談會,求抽取的2名市民中,既有男環(huán)境保護達人又有女環(huán)境保護達人的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案