已知遞增等差數(shù)列中,的等比中項(xiàng),則它的第4項(xiàng)到第11項(xiàng)的和為

A、180              B、198          C、189          D、168

 

【答案】

A

【解析】

試題分析:設(shè)首項(xiàng)、公差分別為,則。因,解得:,故所求的和為。選A。

考點(diǎn):本題主要考查等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式。

點(diǎn)評(píng):數(shù)列中的基本問(wèn)題,往往要依據(jù)題意建立關(guān)于基本量的方程(組)。靈活運(yùn)用數(shù)列的性質(zhì),往往能簡(jiǎn)化解題過(guò)程。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)一模)已知遞增的等差數(shù)列{an}的首項(xiàng)a1=1,且a1、a2、a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{cn}對(duì)任意n∈N*,都有
c1
2
+
c2
22
+…+
cn
2n
=an+1
成立,求c1+c2+…+c2012的值.
(3)在數(shù)列{dn}中,d1=1,且滿足
dn
dn+1
=an+1
(n∈N*),求表中前n行所有數(shù)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知遞增等差數(shù)列{an}中,a1+a2+a3=9,a1•a2•a3=15.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{an}的前10項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知遞增等差數(shù)列{an}中,a1+a2+a3=9,a1•a2•a3=15.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{an}的前10項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江杭州七校高二下期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式

(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列公差為,

由題意可知,即,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價(jià)于,

當(dāng)時(shí),;當(dāng)時(shí),

,所以猜想,的最小值為.     …………8分

下證不等式對(duì)任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時(shí),,成立.

假設(shè)當(dāng)時(shí),不等式成立,

當(dāng)時(shí),, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分

方法二:?jiǎn)握{(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項(xiàng)公式,        …………10分

,    …………12分

所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

同步練習(xí)冊(cè)答案