(2013•河?xùn)|區(qū)二模)如圖,以△ABC的邊AB為直徑的半圓交AC于點(diǎn)D,交BC于點(diǎn)E,EF⊥AB于點(diǎn)F,AF=3BF,BE=2EC=2.那么CD=
3
13
13
3
13
13
分析:如圖所示,設(shè)圓心為點(diǎn)O,半徑為R,連接OE,AE.利用已知AF=3FB,AF+FB=2R,可得FB=
1
2
R,又EF⊥AB,可得OE=EB,即△OEB為等邊三角形.即可求出AE.進(jìn)而求出AC.再利用割線定理即可得出CD.
解答:解:如圖所示,設(shè)圓心為點(diǎn)O,半徑為R,連接OE,AE.
由AB為⊙O的直徑,∴∠AEB=90°,∴AE⊥CE.
∵AF=3FB,AF+FB=2R,
∴FB=
1
2
R,又EF⊥AB,∴OE=EB,即△OEB為等邊三角形.
∴∠ABE=60°.
∴AE=BEtan60°=2
3

在Rt△ACE,AC=
AE2+CE2
=
(2
3
)2+12
=
13

由割線定理可得:CD•CA=CE•CB,∴CD=
1×3
13
=
3
13
13

故答案為
3
13
13
點(diǎn)評(píng):本題綜合考查了圓的性質(zhì)、等邊三角形的判定與性質(zhì)、割線定理等基礎(chǔ)知識(shí),考查了推理能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河?xùn)|區(qū)二模)設(shè)全集U=R,集合A={x|x≥2},B={x|0≤x<5},則集合(?UA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河?xùn)|區(qū)二模)已知正項(xiàng)數(shù)列{an}中,a1=6,點(diǎn)An(an,
an+1
)
在拋物線y2=x+1上;數(shù)列{bn}中,點(diǎn)Bn(n,bn)在過點(diǎn)(0,1),以方向向量為(1,2)的直線上.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;(文理共答)
(Ⅱ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,問是否存在k∈N,使f(k+27)=4f(k)成立,若存在,求出k值;若不存在,說明理由;(文理共答)
(Ⅲ)對(duì)任意正整數(shù)n,不等式
an+1
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
an
n-2+an
≤0成立,求正數(shù)a的取值范圍.(只理科答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河?xùn)|區(qū)二模)定義域R的奇函數(shù)f(x),當(dāng)x∈(-∞,0)時(shí)f(x)+xf'(x)<0恒成立,若a=3f(3),b=(logπ3)•f(logπ3),c=-2f(-2),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河?xùn)|區(qū)二模)近年來,政府提倡低碳減排,某班同學(xué)利用寒假在兩個(gè)小區(qū)逐戶調(diào)查人們的生活習(xí)慣是否符合低碳觀念.若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.?dāng)?shù)據(jù)如下表(計(jì)算過程把頻率當(dāng)成概率).
A小區(qū) 低碳族 非低碳族
頻率 p 0.5 0.5
B小區(qū) 低碳族 非低碳族
頻率 p 0.8 0.2
(1)如果甲、乙來自A小區(qū),丙、丁來自B小區(qū),求這4人中恰有2人是低碳族的概率;
(2)A小區(qū)經(jīng)過大力宣傳,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后隨機(jī)地從A小區(qū)中任選25個(gè)人,記X表示25個(gè)人中低碳族人數(shù),求E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河?xùn)|區(qū)二模)已知有兩個(gè)數(shù)列{an},{bn},它們的前n項(xiàng)和分別記為Sn,Tn,且數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,Sm=26,前m項(xiàng)中數(shù)值最大的項(xiàng)的值為18,S2m=728,又Tn=2n2
(I)求數(shù)列{an},{bn}的通項(xiàng)公式.
(II)若數(shù)列{cn}滿足cn=bnan,求數(shù)列{cn}的前n項(xiàng)和Pn

查看答案和解析>>

同步練習(xí)冊(cè)答案