16.若樣本數(shù)據(jù)x1,x2,…,x10的方差為8,則數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的方差為( 。
A.31B.15C.32D.16

分析 根據(jù)樣本數(shù)據(jù)x1,x2,x3,…,x10的方差是s2,
得出對(duì)應(yīng)數(shù)據(jù)2x1-1,2x2-1,2x3-1,…,2x10-1的方差是s′2=22×s2

解答 解:樣本數(shù)據(jù)x1,x2,…,x10的方差為8,
所以數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的方差為
22×8=32.
故選:C.

點(diǎn)評(píng) 本題考查了方差的性質(zhì)與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.不等式:|x-1|+2x>4的解集是{x|x≥1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$a={2.5^{-\frac{3}{2}}}$,$b={log_{\frac{2}{3}}}2.5$,c=2.5-2,則a、b、c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD..a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知點(diǎn)A(3,5)、B(4,7)、C(-1,x)三點(diǎn)共線,則實(shí)數(shù)x的值是( 。
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在直角坐標(biāo)系中,圓C1:x2+y2=1經(jīng)過(guò)伸縮變換$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后得到曲線C2以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為cosθ+2sinθ=$\frac{10}{ρ}$
(1)求曲線C2的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;
(2)在C2上求一點(diǎn)M,使點(diǎn)M到直線l的距離最小,并求出最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)是F1、F2,P是橢圓上一點(diǎn),若|PF1|=2|PF2|,則橢圓的離心率的取值范圍是( 。
A.$(0,\frac{1}{2})$B.$(\frac{1}{3},\frac{1}{2})$C.$[{\frac{1}{3},1})$D.$[{\frac{1}{2},1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.?dāng)?shù)列{an}的通項(xiàng)公式為an=2n-1,則使不等式${a_1}^2+{a_2}^2+…+{a_n}^2<5×{2^{n+1}}$成立的n的最大值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示,直三棱柱ABC-A1B1C1的各條棱長(zhǎng)均為a,D是側(cè)棱CC1的中點(diǎn).
(1)求證:平面AB1D⊥平面ABB1A1;
(2)求平面AB1D與平面ABC所成二面角(銳角)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.等差數(shù)列{an}滿足an-1+an+an+1=3n(n≥2),函數(shù)f(x)=2x,則log2[f(a1)•f(a2)…f(an)]的值為( 。
A.$\frac{n(n-1)}{2}$B.$\frac{n(n+1)}{2}$C.$\frac{n(n-1)}{4}$D.$\frac{n(n+1)}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案