7.過坐標(biāo)原點(diǎn)O的直線l與圓C:(x+1)2+(y-$\sqrt{3}$)2=100相交于A,B兩點(diǎn),當(dāng)△ABO的面積最大時(shí),則直線l的斜率是( 。
A.$\frac{\sqrt{3}}{3}$B.1C.$\sqrt{3}$D.2

分析 當(dāng)△ABO的面積最大時(shí),線段AB是圓C的直徑,且AB⊥OC,由此能求出當(dāng)△ABO的面積最大時(shí),直線l的斜率.

解答 解:∵過坐標(biāo)原點(diǎn)O的直線l與圓C:(x+1)2+(y-$\sqrt{3}$)2=100相交于A,B兩點(diǎn),
∴當(dāng)△ABO的面積最大時(shí),線段AB是圓C的直徑,且AB⊥OC,
∵C(-1,$\sqrt{3}$),∴kOC=$\frac{\sqrt{3}}{-1}$=-$\sqrt{3}$,
∴${k}_{AB}=-\frac{1}{{k}_{OC}}$=$\frac{\sqrt{3}}{3}$.
∴當(dāng)△ABO的面積最大時(shí),直線l的斜率是$\frac{\sqrt{3}}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查直線的斜率的求法,考查圓、直線方程、斜率公式、直線與直線垂直等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=ax3+bx2+cx(a≠0)在x=±1時(shí)取得極值,且f(1)=-1.
(I)試求常數(shù)a、b、c的值;
(II)試求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若無窮數(shù)列{an}滿足:?k∈N*,對(duì)于$?n≥{n_0}({n_0}∈{N^*})$,都有an+k-an=d(其中d為常數(shù)),則稱{an}具有性質(zhì)“P(k,n0,d)”.
(Ⅰ)若{an}具有性質(zhì)“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3
(Ⅱ)若無窮數(shù)列{bn}是等差數(shù)列,無窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c3=2,b3=c1=8,an=bn+cn,判斷{an}是否具有性質(zhì)“P(2,1,0)”,并說明理由;
(Ⅲ)設(shè){an}既具有性質(zhì)“P(i,2,d1)”,又具有性質(zhì)“P(j,2,d2)”,其中i,j∈N*,i<j,i,j互質(zhì),求證:{an}具有性質(zhì)“$P(j-i,i+2,\frac{j-i}{i}{d_1})$”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.現(xiàn)有三張卡片,正面分別標(biāo)有數(shù)字1,2,3,背面完全相同,將卡片洗勻,背面向上放置,甲、乙二人輪流抽取卡片,每人每次抽一張,抽取后不放回,甲先抽.若二人約定,先抽到標(biāo)有偶數(shù)的卡片者獲勝,則甲獲勝的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.從一批含有11只正品,2只次品的產(chǎn)品中,不放回地抽取3次,每次抽取1只,設(shè)抽得次品數(shù)為X,則E(5X+1)的值為( 。
A.$\frac{42}{13}$B.$\frac{12}{13}$C.$\frac{41}{11}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在三棱錐PABC中,PA=BC=4,PB=AC=5,PC=AB=$\sqrt{11}$,則三棱錐PABC的外接球的表面積為(  )
A.26πB.12πC.D.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且A=30°,B=15°,a=3,則c的值為( 。
A.6B.$\frac{3}{2}$C.3$\sqrt{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{1}{2}$x2-5x+4lnx在[t,t+1]上不單調(diào),則t的取值范圍是( 。
A.{t|3>t>2或0<t<1}B.{t|t>2}C.{t|t>3}D.{t|4>t>3或0<t<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線y=x3+3x2-5
(1)求過M(1,-1)的切線方程;
(2)求y=f(x)的單調(diào)區(qū)間及極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案