圓x2+y2-8x-4y+11=0與圓x2+y2+2y-3=0的位置關(guān)系為( 。
A、相交B、外切C、內(nèi)切D、外離
考點(diǎn):圓與圓的位置關(guān)系及其判定
專題:直線與圓
分析:把圓的方程化為一般形式,求出圓心和半徑,再根據(jù)兩圓的圓心距等于兩圓的半徑之和,可得兩圓相外切.
解答: 解:圓x2+y2-8x-4y+11=0 即 (x-4)2+(y-2)2=9,表示以A(4,2)為圓心、半徑等于3的圓;
圓x2+y2+2y-3=0,即 x2+(y+1)2=4,表示以B(0,-1)為圓心、半徑等于2的圓.
由于圓心距AB=
16+9
=5,正好等于半徑之和,故兩圓相外切,
故選:B.
點(diǎn)評(píng):本題主要考查圓的一般方程,兩圓的位置關(guān)系的判定方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于幾何體有以下命題
①有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱;
②有一個(gè)面是多邊形,其余各面都是三角形的幾何體叫棱錐;
③棱臺(tái)是由平行于底面的平面截棱錐所得到的平面與底面之間的部分;
④兩個(gè)底面平行且相似,其余各面都是梯形的多面體是棱臺(tái);
⑤一個(gè)直角三角形繞其一邊旋轉(zhuǎn)一周所形成的封閉圖形叫圓錐.
其中正確的有
 
.(請(qǐng)把正確命題的題號(hào)寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知圓C的圓心是x-y+1=0與x軸的交點(diǎn),且與直線x+y+3=0相切,求圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P(x,y)在圓(x-2)2+(y+1)2=36上,求u=x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷函數(shù)f(x)=2x2-
1
x
在(0,+∞)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列求導(dǎo)運(yùn)算正確的是( 。
A、(cosx)′=sinx
B、(sin
π
3
)′=cos
π
3
C、(
1
x2
)′=-
1
x
D、(-
1
x
)′=
1
2x
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+x2+x+1,則f(x)在(0,1)處的切線方程為( 。
A、x-y-1=0
B、x+y+1=0
C、x-y+1=0
D、x+y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果實(shí)數(shù)x,y滿足(x-2)2+(y-2)2=1,則x2+y2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)x,y滿足xy+2x+y=4,則x+y+1的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓x2+y2=4 上動(dòng)點(diǎn)P及定點(diǎn)Q(4,0),則線段PQ中點(diǎn)M的軌跡方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案