解:(1)由題可知
由f(x+1)=-f(x)可知f(x+2)=f(x),
即函數(shù)f(x)是以2為最小正周期的周期函數(shù)
故函數(shù)的圖象如右圖所示:
由圖可知,函數(shù)f(x)的單調(diào)遞減區(qū)間為
,
遞增區(qū)間為
…
(2)由函數(shù)的圖象可得函數(shù)g(x)在x∈[0,5]時(shí)的零點(diǎn)個(gè)數(shù)
即為f(x)=kx根的個(gè)數(shù),即函數(shù)f(x)圖象與y=kx圖象交點(diǎn)的個(gè)數(shù)
則當(dāng)k≥e時(shí),函數(shù)f(x)圖象與y=kx圖象在x∈[0,5]時(shí)有一個(gè)交點(diǎn),故g(x)在x∈[0,5]時(shí)有一個(gè)零點(diǎn);
則當(dāng)1<k<e時(shí),函數(shù)f(x)圖象與y=kx圖象在x∈[0,5]時(shí)有兩個(gè)交點(diǎn),故g(x)在x∈[0,5]時(shí)有兩個(gè)零點(diǎn);
則當(dāng)
≤k≤1時(shí),函數(shù)f(x)圖象與y=kx圖象在x∈[0,5]時(shí)有三個(gè)交點(diǎn),故g(x)在x∈[0,5]時(shí)有三個(gè)零點(diǎn);
則當(dāng)
<k<
時(shí),函數(shù)f(x)圖象與y=kx圖象在x∈[0,5]時(shí)有四個(gè)交點(diǎn),故g(x)在x∈[0,5]時(shí)有四個(gè)零點(diǎn);
則當(dāng)
<k≤
時(shí),函數(shù)f(x)圖象與y=kx圖象在x∈[0,5]時(shí)有五個(gè)交點(diǎn),故g(x)在x∈[0,5]時(shí)有五個(gè)零點(diǎn);
則當(dāng)0<k≤
時(shí),函數(shù)f(x)圖象與y=kx圖象在x∈[0,5]時(shí)有六個(gè)交點(diǎn),故g(x)在x∈[0,5]時(shí)有六個(gè)零點(diǎn);
分析:(1)根據(jù)已知可分析出函數(shù)是以2為最小正周期的周期函數(shù),畫出一個(gè)周期內(nèi)函數(shù)的圖象,平移可得到函數(shù)在R上的圖象,利用圖象法,可分析出函數(shù)的單調(diào)區(qū)間;
(2)由函數(shù)的圖象可得函數(shù)g(x)在x∈[0,5]時(shí)的零點(diǎn)個(gè)數(shù)即為f(x)=kx根的個(gè)數(shù),即函數(shù)f(x)圖象與y=kx圖象交點(diǎn)的個(gè)數(shù),根據(jù)函數(shù)圖象對(duì)k值進(jìn)行分類討論后,可得答案.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的單調(diào)性,函數(shù)的周期性,函數(shù)的圖象和性質(zhì),函數(shù)的零點(diǎn),是函數(shù)問題的綜合應(yīng)用,特別是(2)中分類比較多,難度較大.