若sina•
(sin2a)
-cosa•
(cos2a)
=-1,且a≠
2
﹙k∈z﹚,則a所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:化簡等式,得出結(jié)論
sina≤0
cosa≥0
,結(jié)合題意,判斷a是第幾象限角.
解答: 解:∵sina•
(sin2a)
-cosa•
(cos2a)
=-1,
∴sina•|sina|-cosa•|cosa|=-1,
即-sina•sina-cosa•cosa=-1,
sina≤0
cosa≥0

又∵a≠
2
﹙k∈z﹚,
∴a在第四象限.
故選:D.
點評:本題考查了三角函數(shù)的符號判斷問題,解題時應(yīng)熟記三角符號的判斷問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=a|x|(a>0,x∈R)的值域是區(qū)間(0,1],則f(-2)與f(1)的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3a-1)x+4a,(x<1)
logax,(x≥1)
(a∈R)
(1)作出a=
1
2
時函數(shù)f(x)的圖象;
(2)若函數(shù)f(x)在R上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心在拋物線y2=2x上,且過定點(2,0)的圓有最小面積,則該圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C:(x-5)2+(y-4)2=6內(nèi)的一定點A(4,3),在圓上作弦MN,使∠MAN=90°,求弦MN的中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=
1
x-2
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,邊長為2的正方形ABCD中,E是AB邊的中點,F(xiàn)是BC邊上的一點,對角線AC分別交DE、DF于M、N兩點,將△DAE及△DCF折起,使A、C重合于G點,構(gòu)成如圖2所示的幾何體.
(Ⅰ)求證:GD⊥EF;
(Ⅱ)若EF∥平面GMN,求三棱錐G-EFD的體積VG-EFD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,M,N,E,F(xiàn),F(xiàn)分別是棱B1C1,A1D1,D1D,AB的中點.
(1)求證:A1E⊥平面ABMN;
(2)求異面直線A1E與MF所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+b.
(Ⅰ)設(shè)b=a,若|f(x)|在x∈[0,1]上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)求證:存在x0∈[-1,1],使|f(x0)|≥|a|.

查看答案和解析>>

同步練習(xí)冊答案