已知圓,與拋物線的準線相切,則   ___________

 

【答案】

2

【解析】試題分析:圓的圓心為(3,0),半徑為4,的準線為:,由題意得,∴。

考點:拋物線的準線方程、圓的切線問題。

點評:本題比較簡單,考查了拋物線與圓的基礎知識。在確定了準線方程及圓的圓心、半徑后,利用圓心到準線的距離等于半徑得即可求解。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對拋物線C:x2=4y,有下列命題:
①設直線l:y=kx+l,則直線l被拋物線C所截得的最短弦長為4;
②已知直線l:y=kx+l交拋物線C于A,B兩點,則以AB為直徑的圓一定與拋物線的準線相切;
③過點P(2,t)(t∈R)與拋物線有且只有一個交點的直線有1條或3條;
④若拋物線C的焦點為F,拋物線上一點Q(2,1)和拋物線內(nèi)一點R(2,m)(m>1),過點Q作拋物線的切線l1,直線l2過點Q且與l1垂直,則l2一定平分∠RQF.
其中你認為是真命題的所有命題的序號是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三第五次階段考試理科數(shù)學試卷(解析版) 題型:填空題

已知圓上,拋物線的準線為,設拋物線上任意一點到直線的距離為,則的最小值為         

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對拋物線C:x2=4y,有下列命題:
①設直線l:y=kx+l,則直線l被拋物線C所截得的最短弦長為4;
②已知直線l:y=kx+l交拋物線C于A,B兩點,則以AB為直徑的圓一定與拋物線的準線相切;
③過點P(2,t)(t∈R)與拋物線有且只有一個交點的直線有1條或3條;
④若拋物線C的焦點為F,拋物線上一點Q(2,1)和拋物線內(nèi)一點R(2,m)(m>1),過點Q作拋物線的切線l1,直線l2過點Q且與l1垂直,則l2一定平分∠RQF.
其中你認為是真命題的所有命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市高二(下)期末數(shù)學試卷(理科)(解析版) 題型:填空題

對拋物線C:x2=4y,有下列命題:
①設直線l:y=kx+l,則直線l被拋物線C所截得的最短弦長為4;
②已知直線l:y=kx+l交拋物線C于A,B兩點,則以AB為直徑的圓一定與拋物線的準線相切;
③過點P(2,t)(t∈R)與拋物線有且只有一個交點的直線有1條或3條;
④若拋物線C的焦點為F,拋物線上一點Q(2,1)和拋物線內(nèi)一點R(2,m)(m>1),過點Q作拋物線的切線l1,直線l2過點Q且與l1垂直,則l2一定平分∠RQF.
其中你認為是真命題的所有命題的序號是   

查看答案和解析>>

同步練習冊答案