【題目】如圖,在四棱錐中,已知底面,,,,,是上一點.
(1)求證:平面平面;
(2)若是的中點,且二面角的余弦值是,求直線與平面所成角的正弦值.
【答案】(1)證明見解析(2)
【解析】
(1)先證明平面,然后可得平面平面;
(2)建立坐標(biāo)系,根據(jù)二面角的余弦值是可得的長度,然后可求直線與平面所成角的正弦值.
(1)平面,平面,得.
又,在中,得,
設(shè)中點為,連接,則四邊形為邊長為1的正方形,所以,且,
因為,所以,
又因為,所以平面,
又平面,所以平面平面.
(2)以為坐標(biāo)原點,分別以射線射線為軸和軸的正方向,建立如圖空間直角坐標(biāo)系,
則,,.
又設(shè),則,,, ,.
由且知,為平面的一個法向量.
設(shè)為平面的一個法向量,則,
即,取,,則,有,得,從而,.
設(shè)直線與平面所成的角為,則.
即直線與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點處的切線方程為.
(1)求,;
(2)函數(shù)圖像與軸負(fù)半軸的交點為,且在點處的切線方程為,函數(shù),,求的最小值;
(3)關(guān)于的方程有兩個實數(shù)根,,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點在橢圓上,過點作軸的垂線,垂足為,點滿足,已知點的軌跡是過點的圓.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(,在軸的同側(cè)),,為橢圓的左、右焦點,若,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知底面是邊長為2的菱形,平面,,,分別是棱,的中點.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,,,,是上一點,且.
(1)求證:平面;
(2)是的中點,若二面角的平面角的正切值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)討論在上的單調(diào)性;
(2)當(dāng)時,若存在正實數(shù),使得對,都有,求的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周禮夏官馬質(zhì)》中記載“馬量三物:一日戎馬,二日田馬,三日駑馬”,其意思為馬按照品種可以分為三個等級,一等馬為戎馬,二等馬為田馬,三等馬為駑馬.假設(shè)在唐朝的某個王爺要將7匹馬(戎馬3匹,田馬、駑馬各2匹)賞賜給甲、乙、丙3人,每人至少2匹,則甲和乙都得到一等馬的分法總數(shù)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為弘揚我國古代的“六藝文化”,某夏令營主辦單位計劃利用暑期開設(shè)“禮”“樂”“射”“御”“書”“數(shù)”六門體驗課程,每周一門,連續(xù)開設(shè)六周.則“課程‘樂’不排在第一周,課程‘御’不排在最后一周”的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求經(jīng)過橢圓右焦點且與直線垂直的直線的極坐標(biāo)方程;
(2)若為橢圓上任意-點,當(dāng)點到直線距離最小時,求點的直角坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com