16.已知數(shù)列{an}的前n項和為Sn,且Sn=1-an,數(shù)列{bn}滿足bn=log4a1+log4a2+…+log4an
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列$\left\{{\frac{1}{a_n}+\frac{1}{b_n}}\right\}$的前n項和Tn

分析 (1)判斷數(shù)列是等比數(shù)列,求出通項公式.
(2)求出數(shù)列{bn}的通項公式,化簡數(shù)列$\left\{{\frac{1}{a_n}+\frac{1}{b_n}}\right\}$的通項公式,然后求解數(shù)列的和即可.

解答 解:(1)數(shù)列{an}的前n項和為Sn,且Sn=1-an,
可得Sn-1=1-an-1,兩式相減可得:2an=an-1,所以數(shù)列{an}是等比數(shù)列公比為:$\frac{1}{2}$,S1=1-a1
首項為:$\frac{1}{2}$,
an=$\frac{1}{{2}^{n}}$,
(2)bn=log4a1+log4a2+…+log4an=log4(a1a2…+an
=log4$(\frac{1}{2})^{1+2+3+…+n}$=$-\frac{n(n+1)}{4}$.
數(shù)列$\left\{{\frac{1}{a_n}+\frac{1}{b_n}}\right\}$的通項公式為:2n-$\frac{4}{n(n+1)}$,

數(shù)列$\left\{{\frac{1}{a_n}+\frac{1}{b_n}}\right\}$的前n項和Tn=(2+22+23+…+2n)-$4(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})$
=$\frac{2(1-{2}^{n})}{1-2}$-4(1-$\frac{1}{n+1}$)
=${2}^{n+1}+\frac{4}{n+1}-6$.

點評 本題考查數(shù)列求和,等差數(shù)列以及等比數(shù)列求和公式的應(yīng)用,數(shù)列的遞推關(guān)系式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|x2-5x-6≤0},$B=\left\{{\left.x\right|\frac{1}{x-1}>0}\right\}$,則A∩B等于( 。
A.[-1,6]B.(1,6]C.[-1,+∞)D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DA}$=$\overrightarrowmel1wkg$,且$\overrightarrow{a}$•$\overrightarrow$=0,$\overrightarrow$•$\overrightarrow{c}$=0,|$\overrightarrow{a}$|≠|(zhì)$\overrightarrow{c}$|,試判定四邊形ABCD是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1,F(xiàn)(x)=$\left\{\begin{array}{l}{f(x)x>0}\\{-f(x)x<0}\end{array}\right.$,求F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]恒成立,試求b取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知t為實數(shù),函數(shù)f(x)=2loga(2x-t-2),g(x)=logax,其中0<a<1.
(1)若函數(shù)f(x)=g(ax+1)-kx是偶函數(shù),求實數(shù)k的值;
(2)當x∈[1,4]時,f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直線ax-y=0(a≠0)與函數(shù)$f(x)=\frac{{2{{cos}^2}x+1}}{{ln\frac{2+x}{2-x}}}$圖象交于不同的兩點A,B,且點C(6,0),若點D(m,n)滿足$\overrightarrow{DA}+\overrightarrow{DB}=\overrightarrow{CD}$,則m+n=( 。
A.1B.2C.3D.a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{3x}{2x+3}$,數(shù)列{an}滿足a1=1,an+1=f(an),n∈N*
(1)求a2,a3,a4的值;
(2)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列;
(3)設(shè)數(shù)列{bn}滿足bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2015}{2}$對一切n∈N*成立,求最小正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,左,右焦點分別為F1,F(xiàn)2,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線$x-y+\sqrt{2}=0$相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若不過原點且斜率存在的直線l交橢圓C于點G,H,且△OGH的面積為1,線段GH的中點為P,在x軸上是否存在關(guān)于原點對稱的兩個定點M,N,使得直線PM,PN的斜率之積為定值?若存在,求出兩定點M,N的坐標和定值的大。蝗舨淮嬖,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)向量$\overrightarrow{a}$、$\overrightarrow$的夾角為θ(其中0<θ≤π),|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,若(2$\overrightarrow{a}$-$\overrightarrow$)⊥(k$\overrightarrow{a}$+$\overrightarrow$),則實數(shù)k的值為2.

查看答案和解析>>

同步練習(xí)冊答案