命題“?x0∈R,使得x2-x>0”的否定是( 。
分析:根據(jù)命題“?x0∈R,使得x2-x>0”是特稱命題,其否定為全稱命題,即?x∈R,x2-x≤0,從而得到答案.
解答:解:∵命題“?x0∈R,使得x2-x>0”是特稱命題.
∴否定命題為:?x∈R,x2-x≤0.
故選B.
點(diǎn)評:這類問題的常見錯誤是沒有把全稱量詞改為存在量詞,或者對于“>”的否定用“<”了.這里就有注意量詞的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特稱命題的否定是全稱命題,“存在”對應(yīng)“任意”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x0∈R,使log2x0≤0成立”的否定為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題:
①“x>1”是“x>2”的充分不必要條件;   
②若sina
1
2
,則a≠
π
6
;
③若xy=0,則x=0且y=0的逆命題  
④命題?x0∈R,使
x
2
0
-x0+1≤0
 的否定.
其中真命題的序號是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x0∈R,使x2+ax+1<0”的否定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x0∈R,使(a+1)x02+4x0+1<0”是真命題,則實(shí)數(shù)a的取值范圍為
(-∞,3)
(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x0∈R,使ax02+x0-1>0”是假命題,則實(shí)數(shù)a的取值范圍是( 。
A、a<-
1
4
B、a>-
1
4
C、a≥-
1
4
D、a≤-
1
4

查看答案和解析>>

同步練習(xí)冊答案