16.為了檢查某高三畢業(yè)班學(xué)生的體重情況,從該班隨機(jī)抽取了6位學(xué)生進(jìn)行稱重,如圖為6位學(xué)生體重的莖葉圖(單位:kg),其中圖中左邊是體重的十位數(shù)字,右邊是個(gè)位數(shù)字,則這6位學(xué)生體重的平均數(shù)為(  )
A.52B.53C.54D.55

分析 利用平均數(shù)公式求解.

解答 解:由莖葉圖,知:
$\overline{x}$=$\frac{1}{6}(44+51+53+55+60+61)$=54.
故選:C.

點(diǎn)評(píng) 本題考查平均數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平均數(shù)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知正三棱錐P-ABC的各棱長都為2,底面為ABC,棱PC的中點(diǎn)為M,從A點(diǎn)出發(fā),在三棱錐P-ABC的表面運(yùn)動(dòng),經(jīng)過棱PB到達(dá)點(diǎn)M的最短路徑之長為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)矩陣M=$|\begin{array}{l}{m}&{2}\\{2}&{-3}\end{array}|$的一個(gè)特征值λ對(duì)應(yīng)的特征向量為$[\begin{array}{l}{1}\\{-2}\end{array}]$,求m與λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)為定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2-(a+4)x+a.
(1)求實(shí)數(shù)a的值及f(x)的解析式;
(2)求使得f(x)=x+6成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2$\sqrt{3}$.
(1)求證:AB1⊥CC1;
(2)若AB1=3$\sqrt{2}$,A1C1的中點(diǎn)為D1,求二面角C-AB1-D1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知條件p:k-2≤x-2≤k+2,條件q:1<2x<32,若p是q的充分不必要條件,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右頂點(diǎn)分別是A1,A2,M是雙曲線上任意一點(diǎn),若直線MA1,MA2的斜率之積等于2,則該雙曲線的離心率是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)為R上的奇函數(shù),已知當(dāng)x>0時(shí),f(x)=-(x+1)2
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(m2+2m)+f(m)>0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sinx+cos(x+$\frac{π}{6}$),x∈R.
(1)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若x是第二象限角,且f(x-$\frac{π}{12}$)=-$\frac{\sqrt{10}}{5}$cos2x,求cosx-sinx的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案