(本題滿分14分)
已知函數(shù),,和直線: .
又.
(1)求的值;
(2)是否存在的值,使直線既是曲線的切線,又是的切線;如果存在,求出k的值;如果不存在,說明理由.
(3)如果對于所有的,都有成立,求k的取值范圍.
(1)=-2.
(2)
(3)
【解析】解:(1),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052319025950008375/SYS201205231905158281116001_DA.files/image005.png">所以=-2. …………2分
(2)因?yàn)橹本恒過點(diǎn)(0,9).先求直線是 的切線.
設(shè)切點(diǎn)為, …………3分
∵.∴切線方程為,
將點(diǎn)(0,9)代入得.
當(dāng)時(shí),切線方程為=9, 當(dāng)時(shí),切線方程為=.
由得,即有
當(dāng)時(shí),的切線,
當(dāng)時(shí), 的切線方程為…………6分
是公切線,又由得或,
當(dāng)時(shí)的切線為,當(dāng)時(shí)的切線為,
,不是公切線, 綜上所述 時(shí)是兩曲線的公切線 ……7分
(3).(1)得,當(dāng),不等式恒成立,.
當(dāng)時(shí),不等式為,……8分
而
當(dāng)時(shí),不等式為,
當(dāng)時(shí),恒成立,則 …………10分
(2)由得
當(dāng)時(shí),恒成立,,當(dāng)時(shí)有
設(shè)=,
當(dāng)時(shí)為增函數(shù),也為增函數(shù)
要使在上恒成立,則 …………12分
由上述過程只要考慮,則當(dāng)時(shí)=
在時(shí),在時(shí)
在時(shí)有極大值即在上的最大值,…………13分
又,即而當(dāng),時(shí),
一定成立,綜上所述. …………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過作垂直軸于,動(dòng)點(diǎn)滿足。
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個(gè)長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com