5.在平面直角坐標(biāo)系中,曲線$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))的普通方程為x2+y2=1.

分析 利用cos2θ+sin2θ=1,即可得出普通方程.

解答 解:曲線$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),由cos2θ+sin2θ=1,可得x2+y2=1.
∴曲線$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))的普通方程為:可得x2+y2=1.
故答案為:x2+y2=1.

點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程、三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.上海世博會(huì)中國(guó)館的標(biāo)志性建筑物的上層框圖如圖所示,其上下底面是平行的兩正方形,上下底面的中心連線垂直于上下底面,且各側(cè)棱均相等,(即為正棱臺(tái)),經(jīng)側(cè)量得知2AB=A1B1=12,側(cè)棱長(zhǎng)為$\sqrt{34}$.
(1)求證AC⊥BB1;
(2)求二面角D1-A1A-B1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中,周期為π且在[0,$\frac{π}{2}$]上是減函數(shù)的是( 。
A.y=cosxB.y=cos2xC.y=sin2xD.y=-tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.解關(guān)于x的不等式$\frac{ax-1}{x+1}$>0(a∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$ (t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=cos2θ}\end{array}\right.$(θ為參數(shù)).
(1)將曲線C的參數(shù)方程化為普通方程;
(2)求曲線C上的點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)L為曲線C:y=ex在點(diǎn)(0,1)處的切線.
(Ⅰ)證明:除切點(diǎn)(0,1)之外,曲線C在直線L的上方;
(Ⅱ)設(shè)h(x)=ex-ax+ln(x+1),其中a∈R,若h(x)≥1對(duì)x∈[0,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)F1、F2分別為橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),點(diǎn)D為橢圓E的左頂點(diǎn),且|CD|=$\sqrt{5}$,橢圓的離心率為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓E的方程;
(2)對(duì)于正常數(shù)λ,如果存在過(guò)點(diǎn)M(x0,0)(-a<x0<a)的直線l與橢圓E交于A、B兩點(diǎn),使得S△AOB=λS△AOD(其中O為原點(diǎn)),則稱點(diǎn)M為橢圓E的“λ分點(diǎn)”.試判斷點(diǎn)M(1,0)是否為橢圓E的“2分點(diǎn)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=$\sqrt{3}$,點(diǎn)F是PD的中點(diǎn),點(diǎn)E是邊DC上的任意一點(diǎn).
(1)當(dāng)點(diǎn)E為DC邊的中點(diǎn)時(shí),證明:EF∥平面PAC;
(2)證明:無(wú)論點(diǎn)E在DC邊的何處,都有AF⊥EF;
(3)求三棱錐B-AFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=lnx,g(x)=ex
(1)判斷函數(shù)y=f(x)-ag(x)極值點(diǎn)的個(gè)數(shù);
(2)求證:當(dāng) x∈(0,1)時(shí),g(x)>$\frac{2}{2-{x}^{3}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案