已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸長是短軸長的
2
倍,斜率為1的直線l與橢圓相交,截得的弦長為正整數(shù)的直線l恰有3條,則b的值為( 。
A、
2
2
B、
2
C、
3
2
D、
6
2
分析:橢圓即 
x2
2b2
+
y2
b2
=1(b>0)
,由題意可得這三條弦長分別為1,2,1,且過原點的弦長等于2,把 y=x
代入橢圓化簡并利用根與系數(shù)的關(guān)系可得 x1+x2=0,x1•x2=
-2b2
3
,故
2=
2
(x1+ x2)2-4x1• x2
=
2
0+
8b2
3
,解得正數(shù)b的值即為所求.
解答:解:由題意可得 a=
2
b,橢圓即 
x2
2b2
+
y2
b2
=1(b>0)
,由題意可得這三條弦長分別為1,2,1,
且過原點的弦長等于2.  把 y=x代入橢圓可得  3x2=2b2,∴x1+x2=0,x1•x2=
-2b2
3
,
故有 2=
2
(x1+ x2)2-4x1• x2
=
2
0+
8b2
3
,∴b2=
3
4
,b=
3
2
,
故選 C.
點評:本題考查橢圓的標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,判斷過原點的弦長等于2,時間誒體的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點分別為F1,F(xiàn)2,左頂點為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若P是橢圓上的任意一點,求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點M,N(均不是長軸的頂點),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點F(-c,0)是長軸的一個四等分點,點A、B分別為橢圓的左、右頂點,過點F且不與y軸垂直的直線l交橢圓于C、D兩點,記直線AD、BC的斜率分別為k1,k2
(1)當(dāng)點D到兩焦點的距離之和為4,直線l⊥x軸時,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過點M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點.
(1)求橢圓的方程;
(2)當(dāng)m=-1時,求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點做垂直于x軸的直線與橢圓相交于兩點,且兩交點與橢圓的左焦點及右頂點構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點,若N為AB的中點,D為N在直線l上的射影,AB的中垂線與y軸交于點P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,過F作y軸的平行線交橢圓于M、N兩點,若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案