已知函數(shù).
(I)若處取得極值,
①求、的值;②存在,使得不等式成立,求的最小值;
(II)當時,若上是單調(diào)函數(shù),求的取值范圍.(參考數(shù)據(jù)

(1)①,②;(2)

解析試題分析:(1)①根據(jù)處取得極值,求導將帶入到導函數(shù)中,聯(lián)立方程組求出的值;②存在性恒成立問題,,只需,進入通過求導求出的極值,最值.(2)當的未知時,要根據(jù)中分子是二次函數(shù)形式按進行討論.
試題解析:(1)定義域為.
,
因為處取和極值,故,
,解得.
②由題意:存在,使得不等式成立,則只需
,令,令,
所以上單調(diào)遞減,上單調(diào)遞增,上單調(diào)遞減
所以處取得極小值,
而最大值需要比較的大小,
,
,
比較與4的大小,而,所以

所以
所以.
(2)當 時,
①當時,上單調(diào)遞增;
②當時,∵ ,則上單調(diào)遞增;
③當時,設,只需,從而得,此時上單調(diào)遞減;
綜上可得,.
考點:1.利用導數(shù)求函數(shù)的極值、最值;2.函數(shù)恒成立問題;3.利用單調(diào)性求參數(shù)范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,不等式恒成立,求實數(shù)的取值范圍.
(Ⅲ)求證:,e是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知處取得極值。
(Ⅰ)證明:;
(Ⅱ)是否存在實數(shù),使得對任意?若存在,求的所有值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù) (為常數(shù))
(Ⅰ)=2時,求的單調(diào)區(qū)間;
(Ⅱ)當時,,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),,(1)若,求函數(shù)的極值;
(2)若函數(shù)上單調(diào)遞減,求實數(shù)的取值范圍;
(3)在函數(shù)的圖象上是否存在不同的兩點,使線段的中點的橫坐標與直線的斜率之間滿足?若存在,求出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中是常數(shù)且.
(1)當時,在區(qū)間上單調(diào)遞增,求的取值范圍;
(2)當時,討論的單調(diào)性;
(3)設是正整數(shù),證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ) 若函數(shù)處的切線方程為,求實數(shù)的值.
(Ⅱ)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設l為曲線C:在點(1,0)處的切線.
(I)求l的方程;
(II)證明:除切點(1,0)之外,曲線C在直線l的下方

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,一矩形鐵皮的長為8cm,寬為5cm,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長為多少時,盒子容積最大?

查看答案和解析>>

同步練習冊答案