已知函數(shù)f(x)是定義在R上的單調(diào)函數(shù),且對于任意x1、x2∈R都有f(x1+x2)=f(x1)•f(x2),若g(x)=log2f(x),則g(x)的圖象可以是(  )
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象,抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,利用賦值法,先求出f(0)=1,即g(0)=0,再根據(jù)復(fù)合函數(shù)的單調(diào)性得g(x)在其定義域上為增函數(shù),問題的以判斷.
解答: 解:∵g(x)=log2f(x),
∴f(x)>0
任意x1、x2∈R都有f(x1+x2)=f(x1)•f(x2),
令x1=x2=0,則f(0)=f(0)•f(0),
∴f(0)=1,
∴g(0)=log2f(0)=0,
∴g(x)的圖象通過原點(diǎn),
∵函數(shù)f(x)是定義在R上的單調(diào)函數(shù),而y=log2x也是單調(diào)函數(shù),
∴g(x)=log2f(x)再其定義域上也為單調(diào)函數(shù).
只有選項(xiàng)C符合,
故選:C.
點(diǎn)評:本題主要考查了函數(shù)的復(fù)合函數(shù)的單調(diào)性以及利用賦值法解決抽象函數(shù),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,P、M為空間任意兩點(diǎn),且
PM
=
PB1
+6
AA1
+7
BA
+4
A1D1
,則M點(diǎn)一定在平面
 
內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個(gè)命題:
①方程x2+(a-3)x+a=0有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0;
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)的定義域是[-2,2],則函數(shù)f(x+1)的定義域?yàn)閇-1,3];
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點(diǎn)個(gè)數(shù)是m,則m的值不可能是1.
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出四個(gè)命題:
①各側(cè)面都是正方形的棱柱一定是正棱柱;
②各對角面是全等矩形的平行六面體一定是長方體;
③有兩個(gè)側(cè)面垂直于底面的棱柱一定是直棱柱;
④長方體一定是正四棱柱.
其中正確命題的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a與b是異面直線,下列命題正確的是( 。
A、有且僅有一條直線與a,b都垂直
B、過直線a有且僅有一個(gè)平面b平行
C、有平面與a,b都垂直
D、過空間任意一點(diǎn)必可作一直線與a,b相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把邊長為1的正方形ABCD沿對角線AC折起,構(gòu)成三棱錐ABCD,則下列命題:
①以A、B、C、D四點(diǎn)為頂點(diǎn)的棱錐體積最大值為
2
12
;
②當(dāng)體積最大時(shí)直線BD和平面ABC所成的角的大小為45°;
③B、D兩點(diǎn)間的距離的取值范圍是(0,
2
];
④當(dāng)二面角D-AC-B的平面角為90°時(shí),異面直線BC與AD所成角為45°.
其中正確結(jié)論個(gè)數(shù)為( 。
A、4個(gè)B、3個(gè)C、2個(gè)D、1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)棱長都為a的直三棱柱的六個(gè)頂點(diǎn)全部在同一個(gè)球面上,則該球的表面積為(  )
A、
7
3
πa2
B、2πα2
C、
11
4
πα2
D、
4
3
πα2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的參數(shù)方程為
x=1+2cosθ
y=2sinθ
(θ是參數(shù)),P是圓與y軸的交點(diǎn),若以圓心C為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過點(diǎn)P的圓的切線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA=PB=PC=PD=1,∠APB=∠DPC=90°,∠BPC=∠APD=60°.
(Ⅰ)求證:底面ABCD為矩形;
(Ⅱ)在DC取一點(diǎn)M,使得PB⊥平面PAM,求直線PA與平面PBD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案