如圖,已知曲線C1yx2C2y=-(x22,直線lC1、C2都相切,求直線l的方程。

 

 

 

答案:
解析:

解:設(shè)lC1相切于點Px1、x12),與C2相切于點

Qx2,-(x2-2)2)。

對于C2 :  =2x,則與C1相切于點P的切線方程為yx12

=2x1xx1),即y=2x1xx13。①

對于C2=-2(x-2)則與C2相切于點Q的切線方程為y

+(x2-2)2=-2(x2-2)(xx2),即y=-2(x2-2)+x22-4。②

∵ 兩切線重合,

∴ 2x1=-2(x2-2)且-x12x22-4。

解得x1=0,x2=2或x1=2,x2=0。

l的方程為y=0或y=4x-4。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:y=x3(x≥0)與曲線C2:y=-2x3+3x(x≥0)交于O,A,直線x=t(0<t<1)與曲線C1,C2分別交于B,D.
(Ⅰ)寫出四邊形ABOD的面積S與t的函數(shù)關(guān)系式S=f(t);
(Ⅱ)討論f(t)的單調(diào)性,并求f(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:y=x3(x≥0)與曲線C2:y=-2x3+3x(x≥0)交于O,A,直線x=
1
3
與曲線C1,C2分別交于B,D.則四邊形ABOD的面積S為( 。
A、
4
9
B、
3
C、2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•廣州一模)如圖,已知曲線C1:y=x2與曲線C2:y=-x2+2ax(a>1)交于點O,A,直線x=t(0<t≤1)與曲線C1,C2分別相交于點D,B,連結(jié)OD,DA,AB,OB.
(1)寫出曲邊四邊形ABOD(陰影部分)的面積S與t的函數(shù)關(guān)系式S=f(t);
(2)求函數(shù)S=f(t)在區(qū)間(0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃岡模擬)如圖,已知曲線c1
x2
a2
+
y2
b 2
=1(b>a>0,y≥0)
與拋物線c2:x2=2py(p>0)的交點分別為A、B,曲線c1和拋物線c2在點A處的切線分別為l1、l2,且l1、l2的斜率分別為k1、k2
(Ⅰ)當(dāng)
b
a
為定值時,求證k1•k2為定值(與p無關(guān)),并求出這個定值;
(Ⅱ)若直線l2與y軸的交點為D(0,-2),當(dāng)a2+b2取得最小值9時,求曲線c1和c2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:x2+y2=1(|x|<1),C2:x2=8y+1(|x|≥1),動直線l與C1相切,與C2相交于A,B兩點,曲線C2在A,B處的切線相交于點M.
(1)當(dāng)MA⊥MB時,求直線l的方程;
(2)試問在y軸上是否存在兩個定點T1,T2,當(dāng)直線MT1,MT2斜率存在時,兩直線的斜率之積恒為定值?若存在,求出滿足的T1,T2點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案