設(shè)f(x)=
1+ax
1-ax
(a>0且a≠1),g(x)是f(x)的反函數(shù).
(1)求g(x);
(2)當(dāng)x∈[2,6]時,恒有g(x)>loga
t
(x2-1)(7-x)
成立,求t的取值范圍;
(3)當(dāng)0<a≤
1
2
時,試比較f(1)+f(2)+…+f(n)與n+4的大小,并說明理由.
分析:(1)欲求原函數(shù)的反函數(shù),即從原函數(shù)式中反解出x,后再進(jìn)行x,y互換,即得反函數(shù)的解析式.
(2)先分離參數(shù)t,t<(x-1)2(7-x)轉(zhuǎn)化為求右邊函數(shù)式的最小值即可,對于高次函數(shù)的最值問題,可利用導(dǎo)數(shù)研究解決;
(3)欲比較f(1)+f(2)+…+f(n)與n+4的大小,分而解決之,先比較f(k)與某一式子的大小關(guān)系,利用二項式定理可得:f(k)≤1+
2
C
1
k
+
C
2
k
=1+
4
k(k+1)
=1+
4
k
-
4
k+1
,從而問題解決.
解答:解:(1)由題意得:ax=
y-1
y+1
>0
故g(x)=loga
x-1
x+1
,x∈(-∞,-1)∪(1,+∞);(3分)
(2)由loga
x-1
x+1
>loga
t
(x2-1)(7-x)

①當(dāng)a>1時,
x-1
x+1
t
(x2-1)(7-x)
>0
又因為x∈[2,6],所以0<t<(x-1)2(7-x)
令h(x)=(x-1)2(7-x)=-x3+9x2-15x+7,x∈[2,6]
則h'(x)=-3x2+18x-15=-3(x-1)(x-5)
列表如下:
 x  2  (2,5)       5  (5,6)
 h'(x)   +       0 -  
 h(x)  5  遞增 極大值32   遞減  25
所以h(x)最小值=5,
所以0<t<5
②當(dāng)0<a<1時,0<
x-1
x+1
t
(x2-1)(7-x)

又因為x∈[2,6],所以t>(x-1)2(7-x)>0
令h(x)=(x-1)2(7-x)=-x3+9x2-15x+7,x∈[2,6]
由①知h(x)最大值=32,x∈[2,6]
所以t>32
綜上,當(dāng)a>1時,0<t<5;當(dāng)0<a<1時,t>32;(9分)
(3)設(shè)a=
1
1+p
,則p≥1
當(dāng)n=1時,f(1)=1+
2
p
≤3<5
當(dāng)n≥2時
設(shè)k≥2,k∈N*
則f(k)=
1+ak
1-ak
=1+
2
(1+p)k-1
=1+
2
C
1
k
p+
C
2
k
p2+…+
C
k
k
pk

所以f(k)≤1+
2
C
1
k
+
C
2
k
=1+
4
k(k+1)
=1+
4
k
-
4
k+1

從而f(2)+f(3)+…+f(n)≤n-1+
4
2
-
4
n+1
<n+1
所以f(1)+f(2)+f(3)+…+f(n)<f(1)+n+1≤n+4
綜上,總有f(1)+f(2)+f(3)+…+f(n)<n+4.(14分)
點評:本小題考查函數(shù)、反函數(shù)、不等式、導(dǎo)數(shù)及其應(yīng)用等基礎(chǔ)知識,考查劃歸,分類整合等數(shù)學(xué)思想方法,以及推理論證、分析與解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被函數(shù)g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
(2)記f(x)=x,g(x)=lnx,證明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)設(shè)f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•增城市模擬)設(shè)f(x)=lnx+
ax
(a≥0,且為常數(shù))

(1)求f(x)的單調(diào)區(qū)間;
(2)判斷f(x)在定義域內(nèi)是否有零點?若有,有幾個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-a
x
-ax+ln
x
 
 
(a∈R)

(1)當(dāng)a=0時,求f(x)在x=
1
2
處切線的斜率;
(2)當(dāng)0≤a≤
1
2
時,討論f(x)的單調(diào)性;
(3)設(shè)g(x)=x2-2bx+3當(dāng)a=
1
4
時,若對于任意x1∈(0,2),存在x2∈[1,2]使f(x1)≥g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年海南省高三第六次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)f(x)=2x3+ax+bx+1   的導(dǎo)數(shù)為,若函數(shù)的圖象關(guān)于直線 對稱,且.](Ⅰ)求實數(shù),的值;(5分)(Ⅱ)求函數(shù)的極值

 

查看答案和解析>>

同步練習(xí)冊答案