在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a2+c2-b2=
3
ac

(1)求sin2
A+C
2
+cos2B
的值;
(2)若b=2,求△ABC的面積的最大值.
∵a2+c2-b2=
3
ac,
∴cosB=
a2+c2-b2
2ac
=
3
ac
2ac
=
3
2
,
又B為三角形的內(nèi)角,
∴B=
π
6
,
(1)原式=sin2
π-B
2
+cos2B=cos2
B
2
+cos2B=
1
2
(1+cosB)+2cos2B-1
=
1
2
(1+
3
2
)+2×(
3
2
2-1=1+
3
4
;
(2)∵b=2,
3
ac=a2+c2-b2=a2+c2-4≥2ac-4,
∴ac≤
4
2-
3
=4(2+
3
)(當(dāng)且僅當(dāng)a=c=
2
+
6
時(shí)取等號(hào)),
∴S△ABC=
1
2
acsinB=
1
4
ac≤2+
3
,
則△ABC面積的最大值為2+
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿(mǎn)足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案