精英家教網 > 高中數學 > 題目詳情

【題目】設Sn是數列{an}的前n項和,已知a1=3,an+1=2Sn+3(n∈N) (I)求數列{an}的通項公式;
(Ⅱ)令bn=(2n﹣1)an , 求數列{bn}的前n項和Tn

【答案】解:(I)∵an+1=2Sn+3,∴當n≥2時,an=2Sn1+3, ∴an+1﹣an=2(Sn﹣Sn1)=2an , 化為an+1=3an
∴數列{an}是等比數列,首項為3,公比為3.
∴an=3n
(II)bn=(2n﹣1)an=(2n﹣1)3n ,
∴數列{bn}的前n項和Tn=3+3×32+5×33+…+(2n﹣1)3n ,
3Tn=32+3×33+…+(2n﹣3)3n+(2n﹣1)3n+1 ,
∴﹣2Tn=3+2(32+33+…+3n)﹣(2n﹣1)3n+1= ﹣3﹣(2n﹣1)3n+1=(2﹣2n)3n+1﹣6,
∴Tn=(n﹣1)3n+1+3
【解析】(I)利用遞推關系與等比數列的通項公式即可得出;(II)利用“錯位相減法”與等比數列的其前n項和公式即可得出.
【考點精析】本題主要考查了數列的前n項和和數列的通項公式的相關知識點,需要掌握數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點,且平面平面ABCD.

證明:平面PNB;

設點E是棱PA上一點,若平面DEM,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校餐廳新推出A、B、C、D四款套餐,某一天四款套餐銷售情況的條形圖如下.為了了解同學對新推出的四款套餐的評價,對每位同學都進行了問卷調查,然后用分層抽樣的方法從調查問卷中抽取20份進行統(tǒng)計,統(tǒng)計結果如下面表格所示:

滿意

一般

不滿意

A套餐

50%

25%

25%

B套餐

80%

0

20%

C套餐

50%

50%

0

D套餐

40%

20%

40%

(Ⅰ)若同學甲選擇的是A款套餐,求甲的調查問卷被選中的概率;
(Ⅱ)若想從調查問卷被選中且填寫不滿意的同學中再選出2人進行面談,求這兩人中至少有一人選擇的是D款套餐的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDFE中,四邊形ABCD是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABFE⊥平面ABCD.

(1)若G點是DC的中點,求證:FG∥平面AED.

(2)求證:平面DAF⊥平面BAF.

(3)若AE=AD=1,AB=2,求三棱錐D-AFC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】綜合題。
(1)設不等式(x﹣a)(x+a﹣2)<0的解集為N, ,若x∈N是x∈M的必要條件,求a的取值范圍.
(2)已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列是等差數列,;數列的前項和是,且=1.

(1)求數列的通項公式;

(2)求證:數列是等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)投入81萬元經銷某產品,經銷時間共60個月,市場調研表明,該企業(yè)在經銷這個產品期間第x個月的利潤 (單位:萬元),為了獲得更多的利潤,企業(yè)將每月獲得的利潤投入到次月的經營中,記第x個月的當月利潤率 ,例如:
(1)求g(10);
(2)求第x個月的當月利潤率g(x);
(3)該企業(yè)經銷此產品期間,哪個月的當月利潤率最大,并求該月的當月利潤率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結果來評價兩種心理暗示的作用,現有6名男志愿者和4名女志愿者,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示。

(1)求接受甲種心理暗示的志愿者中包含但不包含的概率;

(2)用X表示接受乙種心理暗示的女志愿者人數,求X的分布列與數學期望E(X).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直三棱柱ABC-ABC中,AB=BC=,BB=2,ABC=90,E、F分別為AA、CB的中點,沿棱柱的表面從EF兩點的最短路徑的長度為_______

查看答案和解析>>

同步練習冊答案