分析 (Ⅰ)由同角三角函數(shù)基本關(guān)系式可求sinC的值,利用三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式可求sin∠ABC的值,進(jìn)而利用正弦定理可求AC的值.
(Ⅱ)結(jié)合AC=3,$\overrightarrow{AD}=2\overrightarrow{DC}$,可求DC=1,在△BCD中,根據(jù)余弦定理可求BD,由正弦定理可求sin∠CBD的值.
解答 (本題滿(mǎn)分為10分)
解:(Ⅰ)因?yàn)?cosC=\frac{{2\sqrt{7}}}{7}$,C∈(0,π),
所以:$sinC=\sqrt{1-{{cos}^2}C}=\frac{{\sqrt{21}}}{7}$.
所以:sin∠ABC=sin(A+C)=sinAcosC+cosAsinC=$\frac{{\sqrt{3}}}{2}•\frac{{2\sqrt{7}}}{7}+\frac{1}{2}•\frac{{\sqrt{21}}}{7}=\frac{{3\sqrt{21}}}{14}$,…(3分)
由$\frac{AC}{sin∠ABC}=\frac{BC}{sinA}$,得$AC=\frac{BC}{sinA}•sin∠ABC=3$. …(5分)
(Ⅱ)結(jié)合AC=3,$\overrightarrow{AD}=2\overrightarrow{DC}$知,DC=1.
在△BCD中,根據(jù)余弦定理BD2=DC2+BC2-2DC×BC•cosC=4,
于是BD=2. …(8分)
由$\frac{DC}{sin∠CBD}=\frac{BD}{sinC}$,得$sin∠CBD=\frac{DC×sinC}{BD}=\frac{{\sqrt{21}}}{14}$. …(10分)
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | a<c<b | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {(-1,0)} | B. | {-1} | C. | {-1,0} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com