已知為拋物線的焦點(diǎn),點(diǎn)為其上一點(diǎn),點(diǎn)M與點(diǎn)N關(guān)于x軸對(duì)稱(chēng),直線與拋物線交于異于M,N的A,B兩點(diǎn),且
(I)求拋物線方程和N點(diǎn)坐標(biāo);
(II)判斷直線中,是否存在使得面積最小的直線,若存在,求出直線的方程和面積的最小值;若不存在,說(shuō)明理由。
(Ⅰ)有題意, 即,得
所以拋物線方程為, ………………………………4分
(Ⅱ)由題意知直線的斜率不為,設(shè)直線的方程為()
聯(lián)立方程得,
設(shè)兩個(gè)交點(diǎn)
…………………………6分
,整理得…………8分
此時(shí)恒成立,
由此直線的方程可化為 從而直線過(guò)定點(diǎn)……………9分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052403390007815577/SYS201205240341155625372129_DA.files/image022.png">,所以所在直線平行軸
三角形面積…………………………11分
所以當(dāng)時(shí)有最小值為,此時(shí)直線的方程為 ……12分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知為拋物線的焦點(diǎn),為坐標(biāo)原點(diǎn).點(diǎn)為拋物線上的任一點(diǎn),過(guò)點(diǎn)作拋物線的切線交軸于點(diǎn),設(shè)分別為直線與直線的斜率,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知為拋物線的焦點(diǎn),為坐標(biāo)原點(diǎn)。點(diǎn)為拋物線上的任一點(diǎn),過(guò)點(diǎn)作拋物線的切線交軸于點(diǎn),設(shè)分別為直線與直線的斜率,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省吉林市高三第三次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知為拋物線的焦點(diǎn),拋物線上點(diǎn)滿足
(Ⅰ)求拋物線的方程;
(Ⅱ)點(diǎn)的坐標(biāo)為(,),過(guò)點(diǎn)F作斜率為的直線與拋物線交于、兩點(diǎn),、兩點(diǎn)的橫坐標(biāo)均不為,連結(jié)、并延長(zhǎng)交拋物線于、兩點(diǎn),設(shè)直線的斜率為,問(wèn)是否為定值,若是求出該定值,若不是說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013江西修水一中(上)高二第二次段考試卷文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知為拋物線的焦點(diǎn),點(diǎn)為拋物線內(nèi)一定點(diǎn),點(diǎn)為拋物線上一動(dòng)點(diǎn),最小值為8.
(1)求該拋物線的方程;
(2)若直線與拋物線交于、兩點(diǎn),求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com