已知,正項(xiàng)數(shù)列{an}是首項(xiàng)為2的等比數(shù)列,且a2+a3=24.
(1)求{an}的通項(xiàng)公式.
(2)設(shè)bn=
2n
3an
,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等比數(shù)列的通項(xiàng)公式,等比數(shù)列的性質(zhì)
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)設(shè)出等比數(shù)列的公比,由已知列式求得公比,代入等比數(shù)列的通項(xiàng)公式得答案;
(2)把{an}的通項(xiàng)公式代入bn=
2n
3an
,利用錯(cuò)位相減法求得數(shù)列{bn}的前n項(xiàng)和Tn
解答: 解:(1)設(shè)等比數(shù)列{an}的公比為q(q>0),
由a1=2,a2+a3=24,得2(q+q2)=24,解得:q=-4(舍)或q=3.
an=2•3n-1;
(2)bn=
2n
3an
=
2n
2•3n
=
n
3n

Tn=
1
31
+
2
32
+…+
n
3n

1
3
Tn=
1
32
+
2
33
+…+
n
3n+1

兩式作差得:
2
3
Tn=
1
3
+
1
32
+…+
1
3n
-
n
3n+1
=
1
3
(1-
1
3n
)
1-
1
3
-
n
3n+1

Tn=
3
4
(1-
1
3n
)-
n
2•3n
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式,考查了錯(cuò)位相減法求數(shù)列的和,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式ax+2>(3-a)x-2
(1)若a∈R,求不等式的解集A;
(2)設(shè)不等式|2x+1|<2的解集為B,存在實(shí)數(shù)a使得(1)中求得的集合A滿(mǎn)足條件A∩B={x|-1<x<
1
2
}
,求a及此時(shí)的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列直線(xiàn)中,與直線(xiàn)x-2y+1=0垂直的是( 。
A、2x-y-3=0
B、x-2y+3=0
C、2x+y+5=0
D、x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將4個(gè)新轉(zhuǎn)入的學(xué)生分到高二的4個(gè)指定的班,每班分入的人數(shù)不限
(1)求這4個(gè)班各分到1個(gè)新生的概率
(2)求至少有1個(gè)班未分到新生的概率
(3)求其中恰有1個(gè)班未分到新生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有2個(gè)興趣小組,甲、乙、丙三位同學(xué)各參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組的可能性相同.則這三位同學(xué)參加同一個(gè)興趣小組的概率為( 。
A、
1
4
B、
1
6
C、
1
8
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2和函數(shù)g(x)=sin4x,若f(x)的反函數(shù)為h(x),則h(x)與g(x)兩圖象交點(diǎn)的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)下列各式(其中各字母均為正數(shù)):
(1
(a
2
3
b-1)-
1
2
a-
1
2
b
1
3
6ab5

(2)
5
6
a 
1
3
b-2•(-3a -
1
2
b-1)÷(4a 
2
3
b-3 
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)兩直線(xiàn)l1:xcosα+
1
2
y-1=0;l2:y=xsin(α+
π
6
),△ABC中,內(nèi)角A,B,C對(duì)邊分別為a,b,c,a=2
2
,c=4,且當(dāng)α=A時(shí),兩直線(xiàn)恰好相互垂直;
(Ⅰ)求A值;
(Ⅱ)求b和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a1=1,a3=4,則a2=( 。
A、2
B、
2
C、±2
D、±
2

查看答案和解析>>

同步練習(xí)冊(cè)答案