精英家教網 > 高中數學 > 題目詳情

已知數列{an}對于任意p,q∈N*,有ap+aq=ap+q,若數學公式,則a36=________.

4
分析:由題設知,按遞推公式先求出a2,再導出a4,然后求出a8,再導出a16,進而求出a32,由此可求出a36
解答:由題意得,
故答案為4.
點評:本題考查數列的遞推式,解題時要耐心地進行推導,注意公式的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}對于任意p,q∈N*,有ap+aq=ap+q,若a1=
19
,則a36=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}對于任意p,q∈N*,有ap+aq=ap+q,若a1=
25
,則a100=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

給出以下4個命題,其中所有正確結論的序號是
(1)(3)
(1)(3)

(1)當a為任意實數時,直線(a-1)x-y+2a+1=0恒過定點P則焦點在y軸上且過點P拋物線的標準方程是x2=
4
3
y.
(2)若直線l1:2kx+(k+1)y+1=0與直線l2:x-ky+2=0垂直,則實數k=1;
(3)已知數列{an}對于任意p,q∈N*,有ap+aq=ap+q,若a1=
1
9
,則a36=4
(4)對于一切實數x,令[x]大于x最大整數,例如:[3.05]=3,[
5
3
]=1,則函數f(x)=[x]稱為高斯函數或取整函數,若an=f(
n
3
)(n∈N*),Sn為數列{an}的前n項和,則S50=145.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}對于任意的p,q∈N*,有ap+q=ap•aq.若a1=
2
,則a18=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}對于任意p,q∈N*,有ap•aq=ap+q,若a1=
2
,則a10的值為(  )

查看答案和解析>>

同步練習冊答案