橢圓x2+ny2=1與直線y=1-x交于M,N兩點(diǎn),過原點(diǎn)與線段MN中點(diǎn)所在直線的斜率為
2
2
,則n的值是
 
考點(diǎn):直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:聯(lián)立方程組,轉(zhuǎn)化為二次方程,借助韋達(dá)定理,求出中點(diǎn)坐標(biāo),再利用斜率得到等式,即可求出答案.
解答: 解:設(shè)M(x1,y1),N(x2,y2),中點(diǎn)(x,y),
橢圓x2+ny2=1與直線y=1-x交于M,N兩點(diǎn)
化簡(jiǎn)
x2+ny2=1
y=1-x
可得:(1+n)x2-2nx-n-1=0
所以x1+x2=
2n
n+1
,x=
n
n+1
,y=
1
n+1
,
因?yàn)檫^原點(diǎn)與線段MN中點(diǎn)所在直線的斜率為
2
2

所以
1
n
=
2
2
,即n=
2
,
故答案為:
2
點(diǎn)評(píng):本題綜合考查了直線與圓錐曲線位置關(guān)系,二次方程的系數(shù)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校為調(diào)查高二年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取200名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有48人.

(Ⅰ)在抽取的學(xué)生中,身高不超過165cm的男、女生各有多少人?并估計(jì)男生的平均身高.
(Ⅱ)在上述200名學(xué)生中,從身高在170~175cm之間的學(xué)生按男、女性別分層抽樣的方法,抽出7人,從這7人中選派4人當(dāng)旗手,求4人中至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知BC=1,B=
π
3
,△ABC的面積為
3
,則AC的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓x2+my2=1的焦點(diǎn)在y軸上,焦距是短軸長的兩倍,則m的值為( 。
A、
1
5
B、
1
2
C、
1
4
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯(cuò)誤的是( 。
A、必然事件的概率等于1,不可能事件的概率等于0
B、概率是頻率的穩(wěn)定值,頻率是概率的近似值
C、某事件的概率等于1.1
D、對(duì)立事件一定是互斥事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查甲、乙兩個(gè)網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計(jì)上午8:00-10:00 間各自的點(diǎn)擊量,得如圖所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖:
(I)甲、乙兩個(gè)網(wǎng)站點(diǎn)擊量的極差分別是多少?
(Ⅱ)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是多少?
(Ⅲ)甲、乙兩個(gè)網(wǎng)站點(diǎn)擊量的中位數(shù)和平均數(shù)分別是多少?由此說明哪個(gè)網(wǎng)站更受歡迎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m≥0,直線l:mx-(m2+1)y=4m和圓C:x2+y2-8x+4y+16=0.有以下幾個(gè)說法:
①直線l的傾斜角不是鈍角;
②圓C的面積為4π; 
③直線l必過第一、三、四象限; 
④直線l斜率的取值范圍是[0,
1
2
];
⑤直線l能將圓C分割成弧長的比值為
1
2
的兩段圓。
其中正確的說法有
 
.(寫出所有正確說法的番號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(
1
x
)=
1
1+x
,則函數(shù)f(x)的解析式是( 。
A、f(x)=1+x(x≠0且x≠-1)
B、f(x)=
x
x+1
(x≠0且x≠-1)
C、f(x)=
1
x+1
(x≠0且x≠-1)
D、f(x)=x(x≠0且x≠-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)閷?shí)數(shù)集R,且f(x+2)=f(x+1)-f(x),若f(4)=-2,則函數(shù)g(x)=ex+
2f(2011)
ex+1
的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案