若函數(shù)f(
1
x
)=
1
1+x
,則函數(shù)f(x)的解析式是(  )
A、f(x)=1+x(x≠0且x≠-1)
B、f(x)=
x
x+1
(x≠0且x≠-1)
C、f(x)=
1
x+1
(x≠0且x≠-1)
D、f(x)=x(x≠0且x≠-1)
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)t=
1
x
,則x=
1
t
,代入函數(shù)解析式可得,注意變量的范圍.
解答: 解;設(shè)t=
1
x
,則x=
1
t
∵,函數(shù)f(
1
x
)=
1
1+x
,∴f(t)=
t
1+t
,t≠0,t≠-1,
所以;f(x)=
x
x+1
(x≠0且x≠-1),
故選:B
點評:本題考查了換元法求解析式的方法,特別注意自變量的取值范圍.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

連續(xù)函數(shù)y=f(x)在點x0取極值是f′(x0)=0的( 。
A、充分條件B、必要條件
C、充要條件D、必要非充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓x2+ny2=1與直線y=1-x交于M,N兩點,過原點與線段MN中點所在直線的斜率為
2
2
,則n的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)上單調(diào)遞增,則f(-π)、f(2)、f(3)由大到小的順序為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=2an+1.
(1)證明{an+1}是等比數(shù)列,并求{an}的通項公式;
(2)令bn=nan,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=(x-1)(x-1)(x-2)(x-2)的導數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}滿足S4=S9且a1=-12.
(1)求通項公式an,前n項和公式Sn
(2)求數(shù)列{|an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}的各項均為正數(shù)且a4a7+a5a6=18,則log3a1+log3a2+…+log3a10=( 。
A、12
B、10
C、8
D、2+log35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
ax2
+(a-1)x(a∈R)是區(qū)間(1,4)上的單調(diào)函數(shù),則a的取值范圍是
 

查看答案和解析>>

同步練習冊答案