【題目】已知拋物線的焦點為為上異于原點的任意一點,過點的直線交于另一點,交軸的正半軸于點,且有.當點橫坐標為時,為正三角形.
(1)求的方程;
(2)若直線,且和 有且只有一個公共點.
①證明直線過定點,并求出定點坐標;
②的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
【答案】(1);(2)①證明見解析,;②存在,.
【解析】
試題分析:(1)根據(jù)拋物線的焦半徑公式,結(jié)合等邊三角形的性質(zhì),求出的值,即可求解拋物線的方程;(2)①設(shè)出點的坐標,求出直線的方程,利用,且和有且只有一個公共點,求出點的坐標,寫出直線的方程,將方程化為點斜式,即可求解定點的坐標;②中由①知直線過焦點,所以.設(shè)直線的方程為,再由直線的點斜式,利用點到直線的距離公式,再利用基本不等式即可求解結(jié)論.
試題解析:(1)由題意知,設(shè),則的中點為,因為,由拋物線的定義知,解得或(舍去).由,解得,所以拋物線的方程為.
(2)①證明:由(1)知,設(shè),因為,則,由得,,故,故直線的斜率,因為直線和直線平行,設(shè)直線的方程為,代人拋物線的方程得,由題意,得,設(shè),則,當時,,可得直線的方程為,由,整理可得,直線恒過點.當時,直線的方程為,過點.所以直線過定點.
②由①知直線過焦點,所以.設(shè)直線的方程為,因為點在直線上,故,設(shè),直線的方程為,由,得,代人拋物線的方程得,所以,可求得.所以點到直線的距離為,則的面積,當且僅當,即時,等號成立.所以的面積的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)命題對任意實數(shù),不等式恒成立;命題方程表示焦點在軸上的雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題:“”為真命題,且“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2009年推出一種新型家用轎車,購買時費用為萬元,每年應交付保險費、養(yǎng)路費及汽油費共萬元,汽車的維修費為:第一年無維修費用,第二年為萬元,從第三年起,每年的維修費均比上一年增加萬元.
(1)設(shè)該輛轎車使用年的總費用(包括購買費用、保險費、養(yǎng)路費、汽油費及維修費)為,求的表達式;
(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費用最少)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,, ,,為的中點.
(1)求異面直線,所成角的余弦值;
(2)點在線段上,且,若直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當時,設(shè)的兩個極值點恰為的零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某購物中心為了了解顧客使用新推出的某購物卡的顧客的年齡分布情況,隨機調(diào)查了位到購物中心購物的顧客年齡,并整理后畫出頻率分布直方圖如圖所示,年齡落在區(qū)間內(nèi)的頻率之比為.
(1) 求顧客年齡值落在區(qū)間內(nèi)的頻率;
(2) 擬利用分層抽樣從年齡在的顧客中選取人召開一個座談會,現(xiàn)從這人中選出人,求這兩人在不同年齡組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位每天的用電量(度)與當天最高氣溫(℃)之間具有線性相關(guān)關(guān)系,下表是該單位隨機統(tǒng)計4天的用電量與當天最高氣溫的數(shù)據(jù).
最高氣溫(℃) | 26 | 29 | 31 | 34 |
用電量 (度) | 22 | 26 | 34 | 38 |
(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程(其中);
(Ⅱ)試預測某天最高氣溫為33℃時,該單位當天的用電量(精確到1度).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com