12.設(shè)集合A={x|x2-x-2<0},B={x|x2≤1},則A∪B=(  )
A.{x|-1≤x<2}B.{x|-$\frac{1}{2}$<x≤1}C.{x|x<2}D.{x|1≤x<2}

分析 確定出A,B,找出兩集合的并集即可.

解答 解:由x2-x-2<0得到(x+1)(x-2)<0,解得-1<x<2,即A={x|-1<x<2},
由x2≤1,即-1≤x≤1,即B={x|-1≤x≤1},
則A∪B={x|-1≤x<2},
故選:A.

點評 此題考查了并集及其運算,熟練掌握并集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.底面為邊長是n的正方形的四棱錐的直觀圖、正視圖和俯視圖如圖所示,畫出該幾何體的側(cè)視圖,并求出該四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若直線x+ay-1=0與4x-2y+3=0垂直,則實數(shù)a的值為( 。
A.2B.-2C.-1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\frac{5{x}^{2}-8x+2}{{x}^{3}-2{x}^{2}-2x+1}$=$\frac{A}{x+1}$+$\frac{Bx+C}{{x}^{2}-3x+1}$,求A、B、C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥平面ABCD,Q為AD的中點,PA=PD,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求證:平面PQB⊥平面PAD;
(2)若異面直線AB與PC所成角為60°,求PA的長;
(3)在(2)的條件下,求平面PQB與平面PDC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC中,角A,B,C所對的邊分別為a,b,c.ccosA+$\sqrt{3}$csinA-b-a=0..
(1)求角C的大;
(2)求y=sinA+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標平面內(nèi),已知點A(-1,3),B(2,5),$\overrightarrow{AC}$=(1,2).
(1)求$\overrightarrow{CB}$;
(2)求(2$\overrightarrow{AC}$+$\overrightarrow{CB}$)•$\overrightarrow{BA}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)可導(dǎo),則$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{3△x}$=( 。
A.f′(1)B.$\frac{1}{3}$f′(1)C.不存在D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知sinα+cosα=$\frac{{\sqrt{10}}}{5}$,則tanα=(  )
A.-3或$-\frac{1}{3}$B.-3C.$-\frac{1}{3}$D.3或$-\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案