10.下面有段演繹推理:
“直線平行于平面,則該直線平行于平面內(nèi)所有直線;
已知直線b?平面α,直線a?平面α,直線b∥平面α,
則直線b∥直線a”,則該推理中(  )
A.大前提錯誤B.小前提錯誤C.推理形式錯誤D.該推理是正確的

分析 演繹推理的錯誤有三種可能,一種是大前提錯誤,第二種是小前提錯誤,第三種是邏輯結(jié)構(gòu)錯誤,要判斷推理過程的錯誤原因,可以對推理過程的大前提和小前提及推理的整個過程,細(xì)心分析,不難得到正確的答案.

解答 解:直線平行于平面,則直線可與平面內(nèi)的直線平行、異面、異面垂直.
故大前提錯誤,結(jié)論錯誤.
故選:A,

點評 本題考查的知識點是演繹推理的基本方法及空間中線面關(guān)系,在使用三段論推理證明中,如果命題是錯誤的,則可能是“大前提”錯誤,也可能是“小前提”錯誤,也可能是邏輯錯誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$sin({\frac{π}{2}-α})=-\frac{4}{5}$,α為第二象限角,則$tan\frac{α}{2}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.求187與119的最大公約數(shù)結(jié)果用5進制表示32(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={2,4,6},集合B={1},則A∪B等于(  )
A.{1,2,4,6}B.{0,1,8,10}C.{0,8,10}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.log${\;}_{\frac{1}{2}}$|x-$\frac{π}{3}$|≥log${\;}_{\frac{1}{2}}$$\frac{π}{2}$的解集為(  )
A.{x|-$\frac{π}{6}$≤x≤$\frac{5}{6}$π}B.{x|x≤-$\frac{π}{6}$,或x≥$\frac{5}{6}$π}
C.{x|-$\frac{π}{6}$≤x≤$\frac{5}{6}$π且x≠$\frac{π}{3}$}D.{x|-$\frac{5π}{6}$≤x≤$\frac{5π}{6}$且x≠$\frac{π}{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知如圖為f(x)=msin(ωx+φ)+n,m>0,ω>0的圖象.
(1)求f(x)的解析式;
(2)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,滿足$a=\sqrt{3},f(A)=1+\sqrt{3}$,求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義A*B,B*C,C*D,D*A的運算分別對應(yīng)下面圖中的(1),(2),(3),(4),則圖中,a,b對應(yīng)的運算是( 。
A.B*D,A*DB.B*D,A*CC.B*C,A*DD.C*D,A*D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,BC:AB=2:$\sqrt{3}$,∠B=30°,則∠C=(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xOy中,直線l1:x=-2,曲線$C:\left\{\begin{array}{l}x=2cosθ\\ y=2+2sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點O為極點,以x軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線l1及曲線C的極坐標(biāo)方程;
(2)若直線l2的極坐標(biāo)方程為$θ=\frac{π}{4}$(ρ∈R),設(shè)l2與曲線C的交點為M,N,求△CMN的面積及l(fā)1與l2交點的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案