【題目】如圖,在斜三棱柱中,,,側面與底面ABC所成的二面角為,EF分別是棱,的中點.

(Ⅰ)證明:平面

(Ⅱ)求直線與底面ABC所成的角的大小.

【答案】(Ⅰ)證明見解析;(Ⅱ)

【解析】

(Ⅰ)取BC的中點G,連接EG的交點為P,連接PF,得到,利用線面平行的判定定理證明;

(Ⅱ)過平面ABC,垂足為H,連接HC,得到就是直線與底面ABC所成的角,再利用題設條件和解三角形的知識,即可求解.

(Ⅰ)取BC的中點G,連接EG的交點為P,則點PEG的中點,連接PF,

在平行四邊形中,因為的中點,所以,

平面,平面,故平面.

(Ⅱ)過平面ABC,垂足為H,

連接HC,則就是直線與底面ABC所成的角,

連接AH,并延長交BC于點G,連接GE,

因為,所以的角平分線,

又因為,所以,GBC的中點,

因為,,所以

,,所以,

于是為二面角的平面角,

由于四邊形為平行四邊形,得,

因為,所以,

連接,因為,,所以

所以,

在直角中,,

故直線與底面ABC所成的角為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司A產品生產的投入成本x(單位:萬元)與產品銷售收入y(單位:十萬元)存在較好的線性關系,下表記錄了該公司最近8次該產品的相關數(shù)據(jù),且根據(jù)這8組數(shù)據(jù)計算得到y關于x的線性回歸方程為

x(萬元)

6

7

8

11

12

14

17

21

y(十萬元)

1.2

1.5

1.7

2

2.2

2.4

2.6

2.9

1)求的值(結果精確到0.0001),并估計公司A產品投入成本30萬元后產品的銷售收入(單位:十萬元).

2)該公司B產品生產的投入成本u(單位:萬元)與產品銷售收入v(單位:十萬元)也存在較好的線性關系,且v關于u的線性回歸方程為

i)估計該公司B產品投入成本30萬元后的毛利率(毛利率);

ii)判斷該公司A,B兩個產品都投入成本30萬元后,哪個產品的毛利率更大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)x[1e]時,fx)的最小值為_____;設gx)=[fx]2fx+a若函數(shù)gx)有6個零點,則實數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線,曲線為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系.

1)求的極坐標方程;

2)射線的極坐標方程為,若分別與交于異于極點的兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論在定義域內的極值點的個數(shù);

2)若對,恒成立,求實數(shù)的取值范圍;

3)證明:若,不等式成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,極點為,一條封閉的曲線由四段曲線組成:,.

1)求該封閉曲線所圍成的圖形面積;

2)若直線與曲線恰有3個公共點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)

1)設是函數(shù)的導函數(shù),求的單調區(qū)間;

2)證明:當時,在區(qū)間上有極大值點,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的虛軸的一個頂點為,左頂點為,雙曲線的左、右焦點分別為,點為線段上的動點,當取得最小值和最大值時,的面積分別為,,若,則雙曲線的離心率為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動直線與與橢圓交于、兩不同點,且的面積,其中為坐標原點

1)若動直線垂直于.求直線的方程;

2)證明:均為定值;

3)橢圓上是否存在點,,使得三角形面積若存在,判斷的形狀;若不存在,請說明理由

查看答案和解析>>

同步練習冊答案