已知橢圓C:兩個(gè)焦點(diǎn)為F1、F2,上頂點(diǎn)A(0,b),△AF1F2為正三角形且周長為6.
(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率;
(2)O為坐標(biāo)原點(diǎn),直線F1A上有一動(dòng)點(diǎn)P,求|PF2|+|PO|的最小值.
【答案】分析:(1))由△AF1F2為正三角形可得a=2c,周長為6可得a+a+2c=6,再由a2=b2+c2,聯(lián)立即可求得a,b.
(2)直線F1A的方程為,利用中點(diǎn)垂直法可求得點(diǎn)0關(guān)于直線F1A對(duì)稱的點(diǎn)為M(x,y),由|PO|=|PM|,得|PF2|+|PO|=|PF2|+|PM|≥|MF2|,|MF2|易求得.
解答:解:(1)由題設(shè)得,
解得:a=2,b=c=1,
故C的方程為,離心率e=
(2)直線F1A的方程為
設(shè)點(diǎn)0關(guān)于直線F1A對(duì)稱的點(diǎn)為M(x,y),則,
所以點(diǎn)M的坐標(biāo)為,
∵|PO|=|PM|,|PF2|+|PO|=|PF2|+|PM|≥|MF2|,
|PF2|+|PO|的最小值為
點(diǎn)評(píng):本題考查直線與圓錐曲線的位置關(guān)系、橢圓方程的求解,考查軸對(duì)稱問題,考查學(xué)生分析問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的兩個(gè)焦點(diǎn)為F1(-2
2
,0)
,F2(2
2
,0)
,P為橢圓上一點(diǎn),滿足∠F1PF2=60°.
(1)當(dāng)直線l過F1與橢圓C交于M、N兩點(diǎn),且△MF2N的周長為12時(shí),求C的方程;
(2)求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),稱圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”. 已知橢圓C的兩個(gè)焦點(diǎn)分別是F1(-
2
,0)、F2(
2
,0)
,橢圓C上一動(dòng)點(diǎn)M1滿足|
M1F1
|+|
M1F
2
|=2
3

(Ⅰ)求橢圓C及其“伴隨圓”的方程
(Ⅱ)試探究y軸上是否存在點(diǎn)P(0,m)(m<0),使得過點(diǎn)P作直線l與橢圓C只有一個(gè)交點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長為2
2
.若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的兩個(gè)焦點(diǎn)為F1(-1,0)、F2(1,0),離心率e=
12

(1)求橢圓C的方程;
(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點(diǎn)M、N(M、N不是左、右頂點(diǎn)),且以MN為直徑的圓經(jīng)過橢圓的右頂點(diǎn)A.求證:直線l過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),拋物線E以坐標(biāo)原點(diǎn)為頂點(diǎn),F(xiàn)2為焦點(diǎn).直線l過點(diǎn)F2,且交y軸于D點(diǎn),交拋物線E于A,B兩點(diǎn)若F1B⊥F2B,則|AF2|-|BF2|=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•潮州二模)已知橢圓C的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),點(diǎn)A(1,
2
2
)
在橢圓C上.
(1)求橢圓C的方程;
(2)已知點(diǎn)B(2,0),設(shè)點(diǎn)P是橢圓C上任一點(diǎn),求
PF
1
PB
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案