【題目】如圖,在四棱錐中,底面為梯形,,,,面,的中點.

1)求證:;

2)在線段上是否存在一點,使得?若存在,請證明你的結論;若不存在,請說明理由.

【答案】1)證明見解析;(2)存在,證明見解析

【解析】

1)可作中點,連接,通過底面梯形的性質可證四邊形為正方形,求出邊,,通過勾股定理可證,再結合面,面,可證,得到,即可得證;

2)可將問題轉化,在底面找一點使得,即可求證;

1)取中點,連接,

,

所以四邊形為平行四邊形,

又∵,

所以四邊形為正方形.

中,因為,所以,

中,因為,所以,

因為,所以,

因為,面,面

所以,

因為,

所以.

2)線段上存在一點,滿足,

中點時,,

證明如下:連結,∵的中點,中點,

又∵,所以,

,∴.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)全球摩天大樓的統(tǒng)計,至2019年,安徽省合肥市的摩天大樓已經(jīng)有95座在中國城市中排名第10位,全球排名第15位,目前合肥恒大中心建設中的最高樓,外形設計成了“竹節(jié)”的形態(tài),既體現(xiàn)了力量超凡,又象征著向上生長的強烈意志,更預示了未來的繁榮和興旺.它與傳承千年的“微文化”相得益建成后將躋身世界十大摩天大樓之列,若大樓由9節(jié)“竹節(jié)”組成,最上部分的4節(jié)高228米,最下部分3節(jié)高204米,且每一節(jié)高度變化均勻(即每節(jié)高度自上而下成等差數(shù)列),則該摩天大樓的總高度為(

A.518B.558C.588D.668

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)討論函數(shù)上的單調性;

2)若有唯一零點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201912月以來,湖北省武漢市持續(xù)開展流感及相關疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019COVID19),簡稱“新冠肺炎”.下圖是2020115日至124日累計確診人數(shù)隨時間變化的散點圖.

為了預測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)115日至124日的數(shù)據(jù)(時間變量t的值依次12,…,10)建立模型.

1)根據(jù)散點圖判斷,哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)

2根據(jù)(1)的判斷結果及附表中數(shù)據(jù),建立y關于x的回歸方程;

3)以下是125日至129日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結果回答下列問題:

時間

125

126

127

128

129

累計確診人數(shù)的真實數(shù)據(jù)

1975

2744

4515

5974

7111

(。┊125日至127日這3天的誤差(模型預測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?

(ⅱ)2020124日在人民政府的強力領導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預測數(shù)據(jù),則認為防護措施有效,請判斷預防措施是否有效?

附:對于一組數(shù)據(jù)(,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.

參考數(shù)據(jù):其中.

5.5

390

19

385

7640

31525

154700

100

150

225

338

507

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為, 為參數(shù)),曲線的極坐標方程為.

(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;

(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年,中國的國內(nèi)生產(chǎn)總值(GDP)已經(jīng)達到100億元人民幣,位居世界第二,這其中實體經(jīng)濟的貢獻功不可沒,實體經(jīng)濟組織一般按照市場化原則運行,某生產(chǎn)企業(yè)一種產(chǎn)品的成本由原料成本及非原料成本組成,每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關,經(jīng)統(tǒng)計得到如下數(shù)據(jù):

根據(jù)以上數(shù)據(jù)繪制了如下的散點圖

現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量關系進行擬合,為此變換如下:令,則,即也滿足線性關系,令,則,即也滿足線線關系,這樣就可以使用最小二乘法求得非線性回歸方程,已求得用指數(shù)函數(shù)模型擬合的回歸方程為的相關系數(shù),其他參考數(shù)據(jù)如下(其中

1)求指數(shù)函數(shù)模型和反比例函數(shù)模型中關于的回歸方程;

2)試計算的相關系數(shù),并用相關系數(shù)判斷:選擇反比例函數(shù)和指數(shù)函數(shù)兩個模型中哪一個擬合效果更好(精確到0.01)?

3)根據(jù)(2)小題的選擇結果,該企業(yè)采用訂單生產(chǎn)模式(即根據(jù)訂單數(shù)量進行生產(chǎn),產(chǎn)品全部售出),根據(jù)市場調研數(shù)據(jù),該產(chǎn)品定價為100元時得到簽到訂單的情況如下表:

訂單數(shù)(千件)

1

2

3

4

5

6

7

8

9

10

11

概率

已知每件產(chǎn)品的原來成本為10元,試估算企業(yè)的利潤是多少?(精確到1千元)

參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別是:相關系數(shù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在①;②,這兩個條件中任選一個,補充在下面問題中,然后解答補充完整的題目.

中,內(nèi)角的對邊分別為,設的面積為,已知 .

1)求的值;

2)若,求的值.

注:如果選擇多個條件分別解答,按第一個解答計分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中, ,沿翻折到的位置,使平面平面.

(1)求證: 平面;

(2)若在線段上有一點滿足,且二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C2的極坐標方程為ρ4sinθ.

1)求C1的直角坐標方程與C2的直角坐標方程;

2)已知射線C1交于OP兩點,與C2交于OQ兩點,且QOP的中點,求α.

查看答案和解析>>

同步練習冊答案