已知x>0,y>0,且x+y=4,則使不等式
1
x
+
4
y
≥m恒成立的實(shí)數(shù)m的取值范圍是( 。
A、(-∞,
9
4
]
B、[
9
4
,+∞)
C、(-∞,
5
4
]
D、[
5
4
,+∞)
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:利用“乘1法”與基本不等式的性質(zhì)即可得出.
解答: 解:∵x>0,y>0,且x+y=4,
則使不等式
1
x
+
4
y
=
1
4
(x+y)(
1
x
+
4
y
)
=
1
4
(5+
y
x
+
4x
y
)
1
4
(5+2
y
x
4x
y
)
=
9
4
≥m(當(dāng)且僅當(dāng)y=2x=
8
3
取等號(hào))恒成立的實(shí)數(shù)m的取值范圍是:m≤
9
4

故選:A.
點(diǎn)評(píng):本題考查了“乘1法”與基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在“出彩中國人”的一期比賽中,有6位歌手(1~6)登臺(tái)演出,由現(xiàn)場(chǎng)的百家大眾媒體投票選出最受歡迎的出彩之星,各家媒體獨(dú)立地在投票器上選出3位出彩候選人,其中媒體甲是1號(hào)歌手的歌迷,他必選1號(hào),另在2號(hào)至6號(hào)中隨機(jī)的選2名;媒體乙不欣賞2號(hào)歌手,他必不選2號(hào);媒體丙對(duì)6位歌手的演唱沒有偏愛,因此在1至6號(hào)歌手中隨機(jī)的選出3名.
(Ⅰ)求媒體甲選中3號(hào)且媒體乙未選中3號(hào)歌手的概率;
(Ⅱ)X表示3號(hào)歌手得到媒體甲、乙、丙的票數(shù)之和,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的三個(gè)內(nèi)角滿足2B=A+C,且最大邊是最小邊的2倍,求這三個(gè)內(nèi)角的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的最小值巍峨-2,其圖象相鄰最高點(diǎn)與最低點(diǎn)橫坐標(biāo)之差為2π,且圖象過點(diǎn)(0,1),則其解析式是( 。
A、y=2sin(
x
2
+
π
6
B、y=2sin(
x
2
+
π
3
C、y=2sin(x+
π
6
D、y=2sin(x+
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一副混合后的撲克牌(52張,去掉大、小王)中,隨機(jī)抽取1張,事件A為“抽到梅花K”,事件B為“抽到紅桃”,則P(A∪B)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡(jiǎn):4x4(-3x4y3)÷(-6x2y3
(2)求值:已知10a=2,10b=5,10c=3,求103a-2b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|mx2-2x+1=0},在下列條件下分別求實(shí)數(shù)m的取值范圍:
(1)A=∅;
(2)A恰有兩個(gè)子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線(2m2-5m-3)x-(m2-9)y+4=0的傾斜角為
π
4
,則m的值是( 。
A、3B、2C、-2D、2與3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1,O是底面ABCD對(duì)角線的交點(diǎn).
(1)求證:A1C⊥平面AB1D1
(2)求直線AC與平面AB1D1所成角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案