已知函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖所示,則f(x)的解析式可能為( )

A.f(x)=2sin(-
B.f(x)=cos(2x+
C.f(x)=2cos(-
D.f(x)=2sin(4x+
【答案】分析:根據(jù)函數(shù)圖象求出T,求出ω,根據(jù)選項(xiàng)假設(shè)最大值為2,利用點(diǎn)(0,1)在曲線上,求出φ,得到解析式,判定選項(xiàng)即可.
解答:解:設(shè)函數(shù)f(x)=Asin(ωx+φ),由函數(shù)圖象知該函數(shù)的周期T=4×(x1+π-x1)=4π,
所以ω=,所以ω=12,假如函數(shù)的最大值為2,則A=2,將點(diǎn)(0,1)代入得φ=
所以f(x)=2sin( )=2cos().
故選C.
點(diǎn)評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,觀察圖象,選擇適當(dāng)?shù)狞c(diǎn)的坐標(biāo),確定一些參量的值,本題也考查了誘導(dǎo)公式的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案