已知函數(shù)數(shù)學(xué)公式(a>0且a≠1),給出如下判斷:
①函數(shù)f(x)為R上的偶函數(shù)的充要條件是b=0;
②若數(shù)學(xué)公式,則函數(shù)f(x)為R上的減函數(shù);
③當(dāng)a>1時(shí),函數(shù)為R上的增函數(shù);
④若函數(shù)f(x)為R上的奇函數(shù),且為R上的增函數(shù),則必有0<a<1,b=-1或a>1,b=1.
其中所有正確判斷的序號(hào)是________.

①④
分析:①由題意可得f(-x)=f(x)對(duì)若任意的x都成立,代入可求b
②當(dāng),b=-1時(shí),f(x)=,代入可得f(-x)=-f(x),則函數(shù)f(x)為奇函數(shù),結(jié)合g(x)==在(0,+∞),及y=在R上單調(diào)性,可判斷函數(shù)f(x)在(0,+∞)上單調(diào)性,然后由奇函數(shù)的性質(zhì)判斷函數(shù)f(x)在R上單調(diào)性
③當(dāng)a>1時(shí),函數(shù)y=logat單調(diào)遞增,而t=單調(diào)性不確定,
④若函數(shù)f(x)為R上的奇函數(shù),則f(-x)=-f(x)對(duì)任意的x都成立,代入可求b,由函數(shù)f(x)為R上的增函數(shù)可求a的范圍
解答:①由函數(shù)f(x)為R上的偶函數(shù)可得f(-x)=f(x)對(duì)若任意的x都成立
=對(duì)任意的x都成立
∴bx=0對(duì)任意的x都成立,則b=0,故①正確
②當(dāng),b=-1時(shí),f(x)=,則f(-x)==
=-f(x),則函數(shù)f(x)為奇函數(shù),由于g(x)==在(0,+∞)單調(diào)遞減,y=在R上單調(diào)遞減,由復(fù)合函數(shù)的單調(diào)性可知,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,由奇函數(shù)的性質(zhì)可知,函數(shù)f(x)在R上單調(diào)遞增,故②錯(cuò)誤
③當(dāng)a>1時(shí),函數(shù)y=logat單調(diào)遞增,而t=單調(diào)性不確定,故③錯(cuò)誤
④若函數(shù)f(x)為R上的奇函數(shù),則f(-x)=-f(x)對(duì)任意的x都成立,


∴(1-b2)x2=0對(duì)任意的x都成立
∴b=1或b=-1
∵函數(shù)f(x)為R上的增函數(shù)
當(dāng)b=-1時(shí),在R上單調(diào)遞減,由復(fù)合函數(shù)的單調(diào)性可知,0<a<1
當(dāng)b=1時(shí),在R上單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性可知,a>1
故④正確
故答案為:①④
點(diǎn)評(píng):本題主要考查了對(duì)數(shù)的基本運(yùn)算,函數(shù)的奇偶性的判斷及奇偶函數(shù)的單調(diào)性的性質(zhì)的應(yīng)用,復(fù)合函數(shù)的單調(diào)性的應(yīng)用,綜合性較強(qiáng),要求考生具備綜合應(yīng)用函數(shù)的性質(zhì)解題的能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省襄陽(yáng)五中高三(上)周練數(shù)學(xué)試卷2(實(shí)驗(yàn)班)(8.13)(解析版) 題型:選擇題

已知函數(shù)(a>0且a≠1),若x1≠x2,且f(x1)=f(x2),則x1+x2的值( )
A.恒小于2
B.恒大于2
C.恒等于2
D.與a相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省名校新高考研究聯(lián)盟高三(下)5月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知函數(shù)(a>0且a≠1),若x1≠x2,且f(x1)=f(x2),則x1+x2的值( )
A.恒小于2
B.恒大于2
C.恒等于2
D.與a相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京四中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a>0且a為常數(shù)).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式對(duì)x∈[-,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆福建省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)其中a>0,且a≠1,

(1)求函數(shù)的定義域;

(2)當(dāng)0<a<1時(shí),解關(guān)于x的不等式

(3)當(dāng)a>1,且x∈[0,1)時(shí),總有恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年陜西省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

(12分) 已知函數(shù)=loga(a>0且a≠1)是奇函數(shù)

(1)求,(

(2)討論在(1,+∞)上的單調(diào)性,并予以證明

 

查看答案和解析>>

同步練習(xí)冊(cè)答案