【題目】如圖,在矩形ABCD中, ,點(diǎn)E,H分別是所在邊靠近B,D的三等分點(diǎn),現(xiàn)沿著EH將矩形折成直二面角,分別連接AD,AC,CB,形成如圖所示的多面體.
(1)證明:平面BCE∥平面ADH;
(2)證明:EH⊥AC;
(3)求二面角B-AC-D的平面角的余弦值.
【答案】(1)見(jiàn)解析(2).
【解析】試題分析:(1)根據(jù)折疊前、后不變量得AH∥BE,DH∥EC,根據(jù)線面平行判定定理得AH∥平面BCE,DH∥平面BCE,再根據(jù)面面平行判定定理得平面BCE∥平面ADH.(2)先過(guò)點(diǎn)A作EH的垂線交EH于點(diǎn)O,由面面垂直性質(zhì)定理得AO⊥平面EHC,再由直二面角定義得CO⊥EH,因此根據(jù)線面垂直判定定理得EH⊥平面AOC,即得EH⊥AC.(3)根據(jù)條件作出二面角B-AC-O平面角BQP,并根據(jù)直角三角形求出,最后根據(jù)二面角B-AC-D的平面角為BQP,并利用二倍角余弦公式求值.
試題解析:(1)證明:由折疊前、后圖形對(duì)比可知,在矩形ABCD中有AH∥BE,DH∥EC,
又∵AH∩DH=H,BE∩CE=E,∴平面BCE∥平面ADH.
(2)證明:在多面體中,過(guò)點(diǎn)A作EH的垂線交EH于點(diǎn)O,連接OC.
∵二面角A-EH-C為直二面角,∴AO⊥平面EHC.
由對(duì)稱性可知CO⊥EH,又AO∩CO=O.
∴EH⊥平面AOC,而平面AOC,∴EH⊥AC.
(3)解:過(guò)點(diǎn)B在平面ABEH內(nèi)作BP⊥AO垂足為P,過(guò)點(diǎn)P在平面AOC內(nèi)作PQ⊥AC垂足為Q,連接BQ.∵△ABO是邊長(zhǎng)為3的等邊三角形,∴點(diǎn)P為中點(diǎn), .
∵△AOC是直角邊長(zhǎng)為3的等腰直角三角形,∴.
又∵CO⊥平面ABEH,∴CO⊥BP,BP⊥AO,AO∩CO=O,∴BP⊥平面AOC.
∴BQP為二面角B-AC-O的平面角,在直角三角形BPQ中,
∴.
設(shè)二面角B-AC-D的平面角為,∴.
所以二面角B-AC-D的平面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(sinx,cosx), =(sin(x﹣ ),sinx),函數(shù)f(x)=2 ,g(x)=f( ).
(1)求f(x)在[ ,π]上的最值,并求出相應(yīng)的x的值;
(2)計(jì)算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,討論g(x)在[t,t+2]上零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個(gè)單位后得到函數(shù)g(x)的圖象.若對(duì)滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為 ,且圖象上一個(gè)最低點(diǎn)為 .
(1)求f(x)的解析式;
(2)當(dāng) ,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的半焦距為c,且過(guò)點(diǎn),原點(diǎn)O到經(jīng)過(guò)兩點(diǎn)(c,0),(0,b)的直線的距離為.
(1)求橢圓E的方程;
(2)A為橢圓E上異于頂點(diǎn)的一點(diǎn),點(diǎn)P滿足,過(guò)點(diǎn)P的直線交橢圓E于B,C兩點(diǎn),且,若直線OA,OB的斜率之積為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC= , SB= .
(1)證明:SC⊥BC;
(2)求三棱錐的體積VS﹣ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為的正方體上,分別用過(guò)共頂點(diǎn)的三條棱中點(diǎn)的平面截該正方形,則截去個(gè)三棱錐后,剩下的幾何體的體積是( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值;
(3)在(2)的條件下,當(dāng)MN取得最大值時(shí),在拋物線的對(duì)稱軸l上是否存在點(diǎn)P,使△PBN是等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】百子回歸圖是由1,2,3…,100無(wú)重復(fù)排列而成的正方形數(shù)表,它是一部數(shù)化的澳門(mén)簡(jiǎn)史,如:中央四位“19 99 12 20”標(biāo)示澳門(mén)回歸日期,最后一行中間兩位“23 50”標(biāo)示澳門(mén)面積,…,同時(shí)它也是十階幻方,其每行10個(gè)數(shù)之和,每列10個(gè)數(shù)之和,每條對(duì)角線10個(gè)數(shù)之和均相等,則這個(gè)和為.
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com