分析 利用兩角和的余弦函數(shù)公式整理已知等式,然后再利用兩角和的正弦函數(shù)公式計(jì)算得答案.
解答 解:∵$cos({α+\frac{2π}{3}})=\frac{4}{5},-\frac{π}{2}<α<0$,
∴$cosαcos\frac{2π}{3}-sinαsin\frac{2π}{3}=\frac{4}{5}$,即$\frac{1}{2}cosα+\frac{\sqrt{3}}{2}sinα=-\frac{4}{5}$,
∴$sin({α+\frac{π}{3}})+sinα$=$sinαcos\frac{π}{3}+cosαsin\frac{π}{3}+sinα$
=$\frac{1}{2}sinα+\frac{\sqrt{3}}{2}cosα+sinα$=$\sqrt{3}(\frac{\sqrt{3}}{2}sinα+\frac{1}{2}cosα)=-\frac{4\sqrt{3}}{5}$.
故答案為:$-\frac{4\sqrt{3}}{5}$.
點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),考查計(jì)算能力,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,4] | B. | [4,+∞) | C. | (-∞,6] | D. | [6,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,+∞) | B. | [-e,+∞) | C. | [-1,e] | D. | (-∞,1] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com