11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+2),x≥1}\\{{e}^{x}-1,x<1}\end{array}\right.$,若m>0,n>0,且m+n=f[f(ln2)],則$\frac{1}{m}+\frac{2}{n}$的最小值為3+2$\sqrt{2}$.

分析 運(yùn)用分段函數(shù)求得m+n=1,再由乘1法和基本不等式,即可得到所求最小值.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+2),x≥1}\\{{e}^{x}-1,x<1}\end{array}\right.$,
m+n=f[f(ln2)]=f(eln2-1)=f(2-1)=log33=1,
則$\frac{1}{m}+\frac{2}{n}$=(m+n)($\frac{1}{m}+\frac{2}{n}$)=3+$\frac{n}{m}$+$\frac{2m}{n}$≥3+2$\sqrt{\frac{n}{m}•\frac{2m}{n}}$=3+2$\sqrt{2}$,
當(dāng)且僅當(dāng)n=$\sqrt{2}$m時(shí),取得最小值3+2$\sqrt{2}$.
故答案為:3+2$\sqrt{2}$.

點(diǎn)評 本題考查基本不等式的運(yùn)用:求最值,注意運(yùn)用乘1法,考查分段函數(shù)值的計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.計(jì)算log324-log38的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某校從高二年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校高二年級(jí)共有學(xué)生640人,試估計(jì)該校高二年級(jí)期中考試數(shù)學(xué)成績不低于40分的人數(shù);
(3)若從樣本中隨機(jī)選取數(shù)學(xué)成績在[40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.為了應(yīng)對日益嚴(yán)重的氣候問題,某氣象儀器科研單位研究出一種新的“彈射型”氣候儀器,這種儀器可以彈射到空中進(jìn)行氣候觀測,如圖所示,A,B,C三地位于同一水平面上,這種儀器在C地進(jìn)行彈射實(shí)驗(yàn),觀測點(diǎn)A,B兩地相距100米,∠BAC=60°,在A地聽到彈射聲音比B地晚$\frac{2}{17}$秒(已知聲音傳播速度為340米/秒),在A地測得該儀器至高點(diǎn)H處的仰角為30°,則這種儀器的垂直彈射高度HC=140$\sqrt{3}$米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某單位為了了解用電量y度與氣溫x℃之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,并制作了對照表
氣溫(°C)2016124
用電量(度)14284462
由表中數(shù)據(jù)得回歸直線方程y=$\stackrel{∧}$x+$\stackrel{∧}{a}$中$\stackrel{∧}$=-3,預(yù)測當(dāng)氣溫為2℃時(shí),用電量的度數(shù)是( 。
A.70B.68C.64D.62

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2-2ρcosθ-4ρsinθ+4=0,直線l的方程為x-y-1=0.
(1)寫出曲線C的參數(shù)方程;
(2)在曲線C上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知點(diǎn)A(-$\sqrt{2}$,0),B($\sqrt{2}$,0),P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),直線PA與PB交于點(diǎn)P,且它們的斜率之積是-$\frac{1}{2}$.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l:y=kx+1與曲線C交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)在直線x+2y=0上時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)點(diǎn)A(-5,2),B(1,4),點(diǎn)M為線段AB的中點(diǎn).則過點(diǎn)M,且與直線3x+y-2=0平行的直線方程為3x+y+3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在復(fù)平面內(nèi),復(fù)數(shù)z=i(1+i),那么|z|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊答案