7.已知函數(shù)f(x)=ax-1+logax在區(qū)間[1,2]上的最大值和最小值之和為a,則實(shí)數(shù)a為( 。
A.$\frac{1}{2}$B.$\sqrt{2}$C.2D.4

分析 由于函數(shù)y=ax-1 和y=logax有相同的單調(diào)性,所以分0<a<1和a>1兩種情況討論,分別求出其最大(。┲,列出關(guān)于a的方程求解.

解答 解:分兩類(lèi)討論,過(guò)程如下:
①當(dāng)a>1時(shí),函數(shù)y=ax-1 和y=logax在[1,2]上都是增函數(shù),
∴f(x)=ax-1+logax在[1,2]上遞增,
∴f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,
∴l(xiāng)oga2=-1,得a=$\frac{1}{2}$,舍去;
②當(dāng)0<a<1時(shí),函數(shù)y=ax-1 和y=logax在[1,2]上都是減函數(shù),
∴f(x)=ax-1+logax在[1,2]上遞減,
∴f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,
∴l(xiāng)oga2=-1,得a=$\frac{1}{2}$,符合題意;
故選A.

點(diǎn)評(píng) 本題主要考查了指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的圖象和性質(zhì),涉及函數(shù)的單調(diào)性和最值,體現(xiàn)了分類(lèi)討論的解題思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.集合的表示法有描述法和列舉法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)A={x|a≤x≤a+3},B={x|x<-1或x>5},當(dāng)a為何值時(shí),①A∩B=∅;②A∩B≠∅;③A⊆B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖所示,一種醫(yī)用輸液瓶可以視為兩個(gè)圓柱的組合體.開(kāi)始輸液時(shí),滴管內(nèi)勻速滴下球狀液體,其中球狀液體的半徑$r=\root{3}{10}$毫米,滴管內(nèi)液體忽略不計(jì).如果瓶?jī)?nèi)的藥液恰好156分鐘滴完,則每分鐘應(yīng)滴下75滴.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在底面半徑為2,母線長(zhǎng)為4的圓錐中內(nèi)有一個(gè)高為$\sqrt{3}$的圓柱.
(1)求:圓柱表面積的最大值;
(2)在(1)的條件下,求該圓柱外接球的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:(1)對(duì)任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)當(dāng)x∈(1,2]時(shí),f(x)=2-x.給出如下結(jié)論:
①對(duì)任意m∈Z,有f(2m)=0;②函數(shù)f(x)的值域?yàn)閇0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正確結(jié)論的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知三棱柱ABC-A1B1C1的底面是正三角形,所有棱長(zhǎng)都是6,頂點(diǎn)A1在底面ABC內(nèi)的射影是△ABC的中心,則四面體A1ABC,B1ABC,C1ABC公共部分的體積等于( 。
A.6$\sqrt{2}$B.6$\sqrt{3}$C.12$\sqrt{2}$D.12$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知A,B為雙曲線E的左,右頂點(diǎn),點(diǎn)M在E上,△ABM為等腰三角形,且頂角為135°,則E的離心率為( 。
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\root{4}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.定義在R上的偶函數(shù)f(x)滿足:對(duì)任意的x1,x2∈(-∞,0)(x1≠x2),都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.則下列結(jié)論正確的是(  )
A.$f({log_2}^{\frac{1}{4}})>f({0.2^3})>f(\sqrt{3})$B.$f({log_2}^{\frac{1}{4}})>f(\sqrt{3})>f({0.2^3})$
C.$f(\sqrt{3})>f({0.2^3})>f({log_2}^{\frac{1}{4}})$D.$f({0.2^3})>f(\sqrt{3})>f({log_2}^{\frac{1}{4}})$

查看答案和解析>>

同步練習(xí)冊(cè)答案